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1 INTRODUCTION

Researchers are frequently faced with the task of analysing a data

collection concerning a large number of quantitative variables measured on

many individuals (units) and usually displayed in tabular form. The aim of

the analysis is often to find out patterns of interrelationships which may

exist among variables or individuals. The problem is that, given the data

volume, this aim is not readily achieved.

The focus of principal component analysis (PCA) is on the study of a

large data collection of the type mentioned above from the point of view of

the interrelationships which may subsist among variables or individuals,

providing at the same time the researcher with a graphical representation of

results on a subspace of low dimension (usually one or two).

In this paper, without making any assumption about an underlying

probabilistic model, we will present the main features of PCA.

The contents of the paper can be summarized as follows.

In Section 2, the basic data and their algebraic structure are set out. In

Section 3 and 4, privileging a geometrical language, some concepts which

will be used extensively during the paper are introduced. Section 5 is

devoted to a presentation of an approach to PCA. In Section 6, rules for a

graphical representation of results are given. Finally, in Section 7, other ap-

proaches to PCA are set out (1).

(1) Numerical examples, based both on fictitiuos and real data, are provided apart. Relevant alge-
braic concepts are stated in [20].
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2 BASIC DATA AND THEIR ALGEBRAIC STRUCTURE

2.1   RAW DATA MATRIX

Consider the matrix (raw data matrix)

X =
x1 1 x1 p

xn1 xnp

where xi j (i = 1, ... , n; j = 1, ... , p) denotes the value of the jth quantitative

variable observed on the ith individual.

Although in practical applications the number n of individuals is often

strictly greater of the number p of variables, that assumption is not

necessary in performing PCA and will be dropped; in other words, we will

suppose that it may be n ≥
< p.

Notice that, setting (i = 1, ... , n)

x i =
xi 1

xip

and (j = 1, ... , p)

x j =
x1 j

xn j

 ,

we can write

X' = x1 xn

and

X = x1 xp .

Considering the notation just introduced, we say that x1 , ... , xn and

x1 , ... , xp represent, respectively, the n individuals and the p variables.
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2.2 ALGEBRAIC STRUCTURE

Regarding x1 , ... , xn and x1 , ... , xp as elements of Rp and Rn, respectively,

Rp (individual space) and Rn (variable space) are equipped with a Euclid-

ean metric.

Obviously, the introduction of a Euclidean metric allows us to calculate in

Rp and Rn, in addition to the inner product between vectors, both the length

of vectors and the distance between vectors.

Euclidean space

structure
⇒ Normed space

structure
⇒ Metric space

structure

2.2.1 EUCLIDEAN METRIC IN THE INDIVIDUAL SPACE

In Rp the matrix (symmetric and positive definite (p.d.)) of the Euclidean

metric − with respect to the basis consisting of the p canonical vectors

u1 , ... , up − is generally of the form

Q = diag (q1 , ... , q p )

where q j > 0 (j = 1, ... , p) represents the weight given to the jth variable and

denotes its «importance» in the set of the p variables (2).

The choice of the weights q1 , ... , q p generally depends on the measur-
ement units and/or the variances of the variables x1 , ... , xp .

The situations which may occur are:

• the variables x1 , ... , xp are expressed in the same measurement unit and

present approximatively the same variance;

• the variables x1 , ... , xp are expressed in the same measurement unit but

present considerably different variances;

• the variables x1 , ... , xp are expressed in different measurement units.

(2) In contexts differing from PCA (e.g., canonical correlation analysis), the metric is specified in
other ways.
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In the first case, the weights q1 , ... , q p are usually chosen setting

q1 = ... = q p = 1 −  namely, assuming that each variable has the same

importance of all the others − and thus Q = I p .

In the remaining two cases, we often choose the weights q 1 , ... , q p as the

reciprocals of the variances of the variables x1 , ... , xp . The meaning of this

choice will be explained below (Section 5.3).

2.2.2 EUCLIDEAN METRIC IN THE VARIABLE SPACE

In Rn the matrix (symmetric and p.d.) of the Euclidean metric − with

respect to the basis consisting of the n canonical vectors u 1 , ... , u n − is

M = diag (m1 , ... , m n )

where m i > 0 (i = 1, ... , n), Σ i m i = 1, represents the weight given to the ith

individual and denotes its «importance» in the set of the n individuals.

Whenever we do not have sufficient indications about the differing

importance of the n individuals, we can set m1 = ... = m n = m* from which −
taking into account the condition Σ i m i = 1 − we obtain m* = 1

n and thus

M = diag ( 1
n , ... , 1n ) .

2.3 CENTRED DATA MATRICES

2.3.1 GENERAL CENTRED DATA MATRIX

Given any vector

c
*

=
c

*1

c
*p

 ,

consider the matrix (general centred data matrix)

Z = X − u c
*' =

x1 1 x1 p

xn1 xnp

−
c

*1 c
*p

c
*1 c

*p

=
x1 1 − c

*1 x1 p − c
*p

xn 1 − c
*1 xn p − c

*p
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where u is a column vector of order n with elements all equal to 1.

Then, setting (i = 1, ... , n)

z i =
xi 1 − c

*1

xi p − c
*p

 = 
xi 1

xi p

−
c

*1

c
*p

= x i − c
*

and (j = 1, ... , p)

z j =
x1 j − c

* j

xn j − c
* j

 = 
x1 j

xn j

−
c

*j

c
*j

= x j − c*j ,

we can write

Z' = z 1 z n

and

Z = z 1 z p .

2.3.2 MEAN CENTRED DATA MATRIX

Let

g =
x 1

x p

where x j = Σ i m ixi j is the (weighted) arithmetic mean of the variable x j .

Notice that we can write

g =
x 1

x p

=
Σ i m ixi 1

Σ i m ixi p

=
x1 1 xn 1

x1 p xn p

m1

m n

= x1 xn

m1

m n

=
x1'

xp'

m1

m n

= X 'Mu .

The vector g is called the barycentre (centroid) of the n individuals
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x1 , ... , xn or the mean vector of the p variables x1 , ... , xp .

Next, consider the matrix (mean centred data matrix)

Y = X − u g ' =
x1 1 x1 p

xn1 xnp

−
x1 xp

x1 xp

=
x1 1 − x1 x1 p − xp

xn 1 − x1 xn 1 − xp

 .

Then, setting (i = 1, ... , n)

y i =
xi 1 − x1

xi p − xp

=
xi 1

xi p

−
x1

xp

= x i − g

and (j = 1, ... , p)

y j =
x1 j − xj

xn j − xj

=
x1 j

xn j

−
xj

xj

= x j − x j ,

we can write

Y' = y 1 y n

and

Y = y1 yp .

Taking into account the notation just introduced, we say that y1 , ... , y n

and y1 , ... , yp represent, respectively, the n individuals and the p variables

(measured in terms of deviations from the means).

Of course, the (weighted) arthmetic mean of each y j (j = 1, ... , p) is zero.

REMARK 1.  Notice that

Z = X − u c
*' = X − u (c

*
+ g − g)'

= X − u g ' − u (c
*

− g)' = Y − u (c
*

− g)' .
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3 PRELIMINARY CONCEPTS IN THE INDIVIDUAL SPACE

3.1 INERTIA RELATIVE TO A VECTOR

Consider the n individuals x1 , ... , xn ∈Rp with weights given, respect-

ively, by m1 , ... , m n and a generic vector c*∈Rp.

The quantity

Ic*
= Σ i m i x i − c*

2 = Σ i m i (x i − c*)'Q(x i − c*)

is called the inertia of x1 , ... , xn relative to c* and represents a (weighted)

dispersion measure of x1 , ... , xn with respect to c* (Fig. 1) (3).

Fig. 1

.

.

.

. .
.

x i

x i − c*
2

c*

In turn, the quantity

Ig = Σ i m i x i − g 2 = Σ i m i (x i − g)'Q(x i − g)

is called the inertia of x1 , ... , xn relative to the barycentre.

Notice that, taking into account the notations introduced above (Sections

2.3.1 and 2.3.2), we can write

(3) Some of the concepts introduced in this Section 3 from the point of view of the individual space
will be reinterpreted in the following Section 4 from the point of view of the variable space.



10 RENATO LEONI

Ic*
= Σ i m i z i'Q z i = tr{

m1 z1' Q z1 m1 z1' Q zn

mn zn' Q z1 mn zn' Q zn

}

= tr{M
z1' Q z1 z1' Q zn

zn' Q z1 zn' Q zn

} = tr{M
z1'

z n'

Q z1 z n }

= tr{MZQZ '} = tr{Z 'MZQ}
= tr{Vc*

Q}

and, analogously,

Ig = Σ i m i y i'Q yi = tr{Y'MYQ}
= tr{VgQ} .

The matrices

Vc*
= z1 z n M

z1'

z n'

= Z 'MZ   , Vg = y1 y n M
y1'

y n'

= Y'MY

denote the so-called inertia matrices of x1 , ... , xn relative, respectively, to

c* and g .

3.1.1 HUIGHENS THEOREM

Taking into account that Z = Y − u(c* − g)' (Remark 1) and that, as can

easily be verified, Y'Mu = 0, we have

Vc*
= Z 'MZ

= (Y − u(c* − g)')'M(Y − u(c* − g) ')

= Y'MY − Y 'Mu (c* − g)' − (c* − g) u'MY + (c* − g) u'Mu (c* − g)'

= Vg + (c* − g)(c* − g)' .

Thus, we get (Huighens theorem)
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Ic*
= tr{Vc*

Q} = tr{ [ Vg + (c* − g)(c* − g) ']Q}
= tr{VgQ} + (c* − g)'Q(c* − g) = Ig + c* − g 2 .

In other words, the inertia Ic*
 of x1 , ... , xn relative to c* may be split up

into the sum of two addenda:

• Ig  which represents the inertia of x1 , ... , xn relative to g ;

• c* − g 2 which represents the square distance between c* and g .

Ic*

inertia of x1 , ... , xn

relative to c*

=
Ig

inertia of x1 , ... , xn

relative to g
+

c* − g 2

square distance
between c* and g

REMARK 2.  Notice that Ic*
 reaches the minimum Ig  when c* = g .

3.2 INERTIA ALONG A LINEAR VARIETY

Consider in Rp a subspace Ck of dimension k (1≤k< p), and its orthogonal

complement C k
⊥ .

Denote the orthogonal projection matrices on Ck and C k
⊥ , respectively, by

P and I p − P.

Of course, both these matrices are idempotent and selfadjoint, namely

         P 2 = P    ,          P 'Q = QP

(I p − P)2 = (I p − P)    ,   (I p − P)'Q = Q(I p − P) .

Successively, consider the linear variety c*+ Ck of direction Ck and

translation c*.

Clearly, the vector x i + (c* − c*) −  where x i = Px i and c* = Pc* denote

the orthogonal projections, respectively, of x i and c* on Ck −  is the ortho-

gonal projection of x i on c*+ Ck (Fig. 2).

The quantity
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Ic*+ Ck
= Σ i m i (x i + (c*− c*)) − c*

2 = Σ i m i x i − c*
2

is called the inertia of x1 , ... , xn a l ong c*+ Ck or e x pl a i ne d by c*+ Ck

and represents a (weighted) dispersion measure of the projected vectors

x1 + (c*− c*) , ... , xn + (c*− c*) with respect to c*.

Analogously, the vector ( x i − x i ) + c* is the orthogonal projection of x i on

the linear variety c*+ C k
⊥ of direction C k

⊥ and translation c*.

The quantity

Ic* +C k
⊥ = Σ i m i ((x i − x i) + c*) − c*

2 = Σ i m i x i − (x i + (c*− c*) ) 2

is called the inertia of x1 , ... , xn along c*+ C k
⊥ or not e x pl a i ne d by

c*+ Ck and represents a (weighted) dispersion measure of the projected

vectors ( x1 − x1 ) + c* , ... , (xn − xn ) + c* with respect to c*.

xi

0

Fig. 2

u1

u2

C1

C 1
⊥

x i

x i − x i

c*

c*− c*

c*

c*+ C1

x i + ( c*− c*)( x i − x i ) + c*

c*+ C 1
⊥

Now, consider the linear variety g + Ck of direction Ck and translation g .

The vector x i + (g − g) −  where x i = Px i and g = Pg denote the ortho-

gonal projections, respectively, of x i and g  on Ck −  is the orthogonal
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projection of x i on g + Ck (Fig. 3).

The quantity

Ig +Ck
= Σ i m i (x i + (g − g)) − g 2 = Σ i m i x i − g 2

is called the inertia of x1 , ... , xn a l ong g + Ck or e x pl a i ne d by g + Ck

and represents a (weighted) dispersion measure of the projected vectors

x1 + (g − g) , ... , xn + (g − g) with respect to g .

Analogously, the vector ( x i − x i ) + g is the orthogonal projection of x i on

the linear variety g + C k
⊥ of direction C k

⊥ and translation g .

The quantity

Ig +C k
⊥ = Σ i m i ((x i − x i) + g) − g 2 = Σ i m i x i − (x i + (g − g) ) 2

is called the inertia of x1 , ... , xn along g + C k
⊥ or not e x pl a i ne d by

g + Ck and represents a (weighted) dispersion measure of the projected

vectors ( x1 − x1 ) + g , ... , (xn − xn ) + g with respect to g .

g

0

Fig. 3

x i

g − g

x i − x i

x i

g

C1

C 1
⊥

u1

u2

x i + ( g − g)( x i − x i ) + g

g + C1

g + C 1
⊥
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3.2.1 A DECOMPOSITION OF THE INERTIA RELATIVE TO A VECTOR

Firstly, notice that we can write

Ic*
= tr{Vc*

Q} = tr{Vc*
QP + Vc*

Q(I p − P)}
= tr{Vc*

QP} + tr{Vc*
Q(I p − P)} .

Thus − since we have (P 'QP = QP)

Ic*+ Ck
= Σ i m i P xi − Pc*

2 = Σ i m i P ( xi − c*) 2

= Σ i m i P z i
2 = Σ i m i z i' P 'QP z i

= tr{
m1 z1' QP z1 m1 z1' QP zn

mn zn' QP z1 mn zn' QP zn

} = tr{M
z1'

z n'

QP z1 z n }

= tr{MZQP Z '} = tr{Z 'MZQP}
= tr{Vc*

QP}
and, analogously,

Ic*+ C k
⊥ = tr{Vc*

Q(I p − P)}
− we obtain the decomposition

Ic*
= Ic*+ Ck

+ Ic*+ C k
⊥

Namely, the inertia Ic*
 of x1 , ... , xn relative to c* may be split up into the

sum of two addenda:

• Ic*+ Ck
 which is the inertia of x1 , ... , xn explained by c*+ Ck ;

• Ic*+ C k
⊥ which is the inertia of x1 , ... , xn not explained by c*+ Ck .

Ic*

inertia of x1 , ... , xn

relative to c*

=
Ic*+ Ck

inertia of x1 , ... , xn

explained by c*
+ Ck

+
Ic*+ C k

⊥

inertia of x1 , ... , xn

not explained by c*
+ Ck

Of course, for c* = g , we get
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Ig = Ig +Ck
+ Ig +C k

⊥

where ( g = Pg)

Ig +Ck
= Σ i m i xi − g 2 = tr{VgQP} ,

Ig +C k
⊥ = Σ i m i (xi − xi ) + g − g 2 = tr{VgQ(I p − P)} .

Ig

inertia of x1 , ... , xn

relative to g

=
Ig +Ck

inertia of x1 , ... , xn

explained by g + Ck

+
Ig +C k

⊥

inertia of x1 , ... , xn

not explained by g + Ck

3.2.2 A DECOMPOSITION OF THE INERTIA ALONG A LINEAR VARIETY

Firstly, consider the linear varieties c*+ Ck and g + Ck . The vector

c*+ ( g − g) is the orthogonal projection of c*
 on the linear variety g + Ck

(Fig. 4). Hence, the square distance between c*+ Ck and g + Ck is

c* − c* − (g − g) 2 = ( c* − g) − (c* − g) 2 .

0

Fig. 4

g

g
g − g

u1

u2 C1

C 1
⊥

c*

c*+ C1

c*

c*+ C 1
⊥

g + ( c*− c*) c*+ ( g − g)

c* − c*

g + C1

g + C k
⊥
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Successively, consider the linear varieties c*+ C k
⊥ and g + C k

⊥ . The vector

g + (c*− c*) is the orthogonal projection of c* on the linear variety g + C k
⊥ .

Therefore, the square distance between c*+ C k
⊥ and g + C k

⊥ is

c*− g − (c*− c*) 2 = c*− g 2 .

Now, notice that − since

Ic*+ Ck
= Ic*

− Ic*+ C k
⊥   ,   Ig +Ck

= Ig − Ig +C k
⊥   ,   Vc*

= Vg + (c*− g)(c*− g)'

− we get (P 'QP = QP)

Ic*+ Ck = tr{[Vg + (c*− g)(c* − g)']Q} − tr{[Vg + (c*− g)(c* − g)']Q(I − P)}
= tr{VgQ} − tr{VgQ(I p − P)} + tr{(c*− g)(c* − g)'Q}

− tr{(c*− g)(c* − g)'Q(I p − P)}
= tr{VgQP} + tr{(c*− g)(c* − g)'QP}
= Ig +Ck + tr{(c*− g)(c* − g)'P'QP}
= Ig +Ck + (c*− g)'P'QP (c*− g)

= Ig +Ck + (P c*− Pg)'Q (P c*− Pg)

= Ig +Ck + ( c*− g )'Q( c*− g )

= Ig +Ck + c*− g 2 .

Namely, the inertia Ic*+ Ck
 of x1 , ... , xn explained by c*+ Ck may be split

up into the sum of two addenda:

• Ig +Ck which is the inertia of x1 , ... , xn explained by g + Ck ;

• the square distance between the linear varieties c*+ C k
⊥ and g + C k

⊥ .

Ic*+ Ck

inertia of x1 , ... , xn

explained by c*
+ Ck

=
Ig +Ck

inertia of x1 , ... , xn

explained by g + Ck

+
square distance

between

c*+ C k
⊥ , g + C k

⊥
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Analogously, as can easily be verified, we obtain the decomposition

Ic*+ C k
⊥ = Ig +C k

⊥ + c*− c* − (g − g)
2

which shows that the inertia Ic*+ C k
⊥ of x1 , ... , xn not explained by c*+ Ck may

be split up into the sum of two addenda:

• Ig +C k
⊥ which is the inertia of x1 , ... , xn not explained by g + Ck ;

• the square distance between the linear varieties c*+ Ck and g + Ck .

Ic*+ C k
⊥

inertia of x1 , ... , xn

not explained by c*+ Ck

=
Ig +C k

⊥

inertia of x1 , ... , xn

not explained by g + Ck

+
square distance

between

c*+ Ck , g + Ck

REMARK 3.  Notice that both the inertias Ic*+ Ck
 and Ic*+ C k

⊥ of x1 , ... , xn are

minimized whenever the linear varieties c*+ Ck and c*+ C k
⊥ pass through

the barycentre g .

REMARK 4.  It is immediately apparent that, if we consider the n individuals

y1 , ... , y n (measured in terms of deviations from the means) instead of

x1 , ... , xn , we can interpret:

• Ig  as the inertia of y1 , ... , y n relative to 0 ;

• Ig +Ck as the inertia of y1 , ... , y n explained by the subspace Ck ;

• Ig +C k
⊥ as the inertia of y1 , ... , y n not explained by the subspace Ck .
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4 PRELIMINARY CONCEPTS IN THE VARIABLE SPACE

4.1 VARIANCES AND COVARIANCES

Consider the p variables x1 , ... , xp ∈Rn with weights given, respectively,

by q1 , ... , q p .

The orthogonal projection x j of x j on the subspace (of dimension 1)

spanned by the vector u∈Rn with elements all equal to 1 is (Fig. 5)

x j = u (u'Mu) -1 u'Mx j = u u'Mx j = u xj .

0

x j

x j

u

Fig. 5

x j − x j
2

The quantity

σ j
2 = x j − x j

2 = (x j − x j ) 'M( x j − x j ) = y j'My j

is the variance of x j or y j and the quantity (j,t = 1, ... , p)

σ j t = (x j − x j ) 'M( x t − x t ) = y j'My t

is the covariance between x j and x t or between y j and y t .

In turn, the (symmetric) matrix

V =
σ 1

2 σ 1 p

σ p 1 σ p
2

denotes the so-called covariance matrix of x1 , ... , xp or y1 , ... , yp .
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Notice that we can write

V =
y1' My1  y1' Myp

yp' My1 yp' Myp

= Y'MY .

Hence, the covariance matrix V is nothing other than the inertia matrix

Vg  defined above (Section 3.1).

Moreover, we immediately realize that V is the Gram matrix of y1 , ... , yp

and hence V  is positive definite or positive semi-definite according to

y1 , ... , yp are linearly independent or dependent (4).

Of course,

r(Y' M Y) = r(Y' M
1 2 M

1 2 Y) = r(M
1 2 Y) = r(Y) .

Finally, the quantity

Jp = Σ j q j σ j
2 = Σ j q j y j'My j

denotes the so-called global variability of x1 , ... , xp or y1 , ... , yp .

4.2 CORRELATIONS

The cosine of the angle formed by the vectors y j = x j − x j and y t = x t − x t

(j , t = 1, ... , p; y j ,y t ≠ 0) is, as can easily be verified, the linear correlation

coefficient r j t between x j and x t or between y j and y t ; namely, we have

cos(y j , y t ) =
(x j − x j ) 'M(x t − x t )

σ jσ t

=
σ j t

σ jσ t

= r j t .

In turn, the matrix

R = Q1 / σ Y' M YQ1 / σ ,

where

(4) Notice that, in general, r (Y ) ≠ r (X).
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Q1 / σ = diag ( 1
σ 1

 , ... , 1
σ p

) ,

represents the so-called correlation matrix of x1 , ... , xp or y1 , ... , yp .

Finally, consider a generic variable x∈Rn and the corresponding vector

y = x − u x, where x = Σ im ixi is the (weighted) arithmetic mean of x .

The orthogonal projection y of y  on the subspace spanned by the p

vectors y1 , ... , yp , assuming that r(Y) = p, is given by

y = Y(Y' M Y)-1 Y' M y = PY y .

The square cosine of the angle formed by the vectors y and y denotes the

square multiple linear correlation coefficient (linear determination coeffi-

cient) ρ between x and x1 , ... , xp or between y and y1 , ... , yp .

In fact, since (M PY = PY' M)

y ' M y = y ' M PY y = y ' M PY PY y = y ' P Y' M PY y = y 'M y ,

we can write

cos2( y , y ) = ( y ' M y )2

( y ' M y) ( y 'M y )
= ( y 'M y )2

( y ' M y) ( y 'M y )
= y 'M y

y ' M y
= ρ .

4.3 INTERPRETATION  OF SOME CONCEPTS OF INERTIA

4.3.1 INERTIA RELATIVE TO THE BARYCENTRE

We want to show that the inertia Ig  (Section 3.1) is nothing other that

the global variability J p defined above (Section 4.1).

In fact,

Ig = tr {VQ} = tr {QV}

= tr {Q
y1' My1  y1' Myp

yp' My1 yp' Myp

} = tr {
q1 y 1' My1 q1 y 1' Myp

qp y p' My1 qp y p' Myp

}

= Σ j q j y j'My j = J p .
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4.3.2 INERTIA ALONG A LINEAR VARIETY THROUGH THE BARYCENTRE

Consider again the n individuals x1 , ... , xn ∈Rp and the orthogonal projec-

tion matrix P on Ck .

Let

P X' = P x1 xn = P x1 P xn = x1 xn =
x 1 1 x n 1

x 1 p x n p

 .

Notice that x i 1 , ... , x i p represent the co-ordinates of x i (Fig. 6).

Moreover, we can write

XP ' =
x 1 1 x 1 p

x n 1 x n p

=
x1 1 x1 p

xn 1 xn p

p1 1 pp 1

p1 p pp p

= Xp 1 Xp p

where p j (j = 1, ... , p) denotes the jth column of P ' .

.

0

Fig. 6

u1

u2

C1

x1

xn.
.

x1

x i

xn

x1 1 xi 1 xn 1

xi 2

x1 2

xn 2

x i

Now, consider the variable (j = 1, ... , p)

x j = X p j =
x 1 j

x n j
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and notice that its (weighted) arithmetic mean and variance are, respect-

ively,

xj = [ m1 m n]

x 1 j

x n j

= u'M x j = u'MXp j = g ' p j

and

σ j
2 = (X p j − u g ' p j)'M(X p j − u g ' p j)

= p j' (X − u g ')'M(X − u g ') p j

= p j' ( x1 xp − u x1 xp )' M ( x1 xp − u x1 xp ) p j

= p j' x1 − u x1 xp − u xp
' M x1 − u x1 xp − u xp p j

= p j' y1 yp ' M y1 yp p j

= p j' V p j .

The quantity

Jp = Σ j q j σ j
2 = Σ j q j p j' V p j

denotes the global variability of x1 , ... , xp .

We want to show that the inertia Ig +Ck of x1 , ... , xn explained by the

linear variety g + Ck  is nothing other that the global variability Jp .

In fact,

Ig +Ck
= tr{VQP} = tr{VP 'QP}

= tr{QP VP '} = tr{Q
p 1'

p p'

V p 1 p p }

= tr{Q
p 1'V p 1 p 1'V p p

p p' V p 1 p p' V p p

} = tr{
q1 p 1'V p 1 q1 p 1'V p p

qp p p' V p 1 qp p p' V p p

}

= Σ j q j p j' V p j = Jp .
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5 AN APPROACH TO PCA

5.1 PRINCIPAL VECTORS, PRINCIPAL COMPONENTS

Consider again the n individuals x1 , ... , xn ∈Rp with weights given, re-

spectively, by m1 , ... , m n and the linear varieties c*+ Ck and c*+ C k
⊥ .

The vectors x1 + (c*− c*) , ... , xn + (c*− c*) may be interpreted as the

«images» of x1 , ... , xn on c*+ Ck .

If we want such images to be, on the whole, the most representative of

x1 , ... , xn , a criterion may consist in maximizing the inertia explained by

c*+ Ck with respect to c
*

and Ck
(5).

This problem can be solved in two steps: at the first step, taking into

account Remark 3, we force the linear variety c*+ Ck to pass through the

barycentre g; at the second step, we maximize the inertia explained by

g + Ck with respect to Ck .

As regards this last problem, first notice that we may suppose that the

orthogonal subspaces Ck and C k
⊥ of Rp are spanned, respectively, by the

orthonormal vectors c1 , ... , c k and c k + 1 , ... , c p .

Thus − setting

C k = [ c1 c k ] ,   C p - k = [ c k + 1 c p ] ,   C p = [C k   C p - k ]

− the orthogonal projection matrices on C k and C k
⊥ become, respectively,

P = C k (C k' QC k)
-1C k' Q = C k C k' Q

I p − P = C p - k (C p - k' QC p - k)
-1C p - k' Q = C p - k C p - k' Q .

Moreover,

Ig +Ck
= tr{VQP} = tr{VQC k C k' Q} = tr{C k' QVQC k} .

Hence, our problem lies in finding out

(5) Of course, given that the inertia relative to c* is a fixed quantity, this criterion is equivalent to

minimizing the inertia not explained by c* + C k .
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Max
C k

tr{C k' QVQC k}   , C k' QC k = I k .

In order to solve the problem at hand, consider the Lagrange function

L(C k , L) = tr{C k' QVQC k} − tr{(C k' QC k − Ik) L}

where L = L' is a matrix of order (k,k) of Lagrange multipliers.

At (C k , L) where L(C k , L) has a maximum, it must be

∂L(C k , L)
∂C k (C k , L)

= 2Q(VQC k − C k L) = O (p , k )

∂L(C k , L)
∂L (C k , L)

= − (C k
' QC k − Ik) = O (k , k )

which gives

VQC k = C k L , C k
' QC k = I k .

Therefore, we must look for solutions of the system

(*) VQC k = C k L ,   C k' QC k = I k

in the unknowns C k and L.

To this end, consider the equation

VQc = λc

in the unknowns c and λ .

This equation possesses p orthonormal eigenvectors c 1 , ... , c k , c k + 1 ,

... , c p corresponding to the p (real) eigenvalues λ 1 ≥ ... ≥ λ k ≥ λ k + 1 ≥

... ≥ λ p .

Moreover, since (j = 1 , ... , p)

VQ c j = λ j c j ,



PRINCIPAL COMPONENT ANALYSIS 25

premultiplying both members by c j' Q, we get

c j' QVQ c j = λ j c j' Q c j = λ j .

On the other hand, as V is positive definite or positive semi-definite and

Q = Q', QVQ is also positive definite or positive semi-definite −  with

r(QVQ) = r(V) = r(Y) − and hence λ j ≥ 0 (j = 1 , ... , p).

Thus − setting

C k = [ c 1 c k ]   ,  C p - k = [ c k +1 c p ]   ,  C p = [ c 1 c p ]

D k = diag (λ 1 , ... , λ k)   ,  D p - k = diag (λ k +1 , ... , λ p)   ,  D p = diag (λ 1 , ... , λ p)

− solutions of the system (*) are provided by C k = [ c 1 c k ] and L = D k .

Summing up, first we have

VQC k = C k D k    , C k' QC k = I k ,

VQC p - k = C p - k D p - k    , C p - k' QC p - k = I p - k ,

VQC p = C p D p    , C p' QC p = I p

and

C k' QVQC k = D k    , C k' QC k = I k ,

C p - k' QVQC p - k = D p - k    , C p - k' QC p - k = I p - k ,

C p' QVQC p = D p    , C p' QC p = I p .

Then, we have ( P = C k C k' Q)

Ig +C k
= tr{VQP} = tr{C k' QVQC k}
= tr{D k} = λ 1 + ... + λ k ,

Ig +C k
⊥ = tr{VQ(I − P)} = tr{C p - k' QVQC p - k}

= tr{D p - k} = λ k + 1 + ... + λ p ,

Ig = tr{VQ} = tr{C p' QVQC p}
= tr{D p} = λ 1 + ... + λ p .
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Moreover, the ratio

GQRI = 
Ig +C k

Ig
 = λ 1 + ... + λ k

λ 1 + ... + λ p

 ,

which denotes that part of the inertia explained by the linear variety g + C k ,

may be used as an index measuring the global quality of representation of

x1 + ... + xn on g + C k .

The eigenvector c j (j = 1 , ... , p) is called the jth principal vector, while

the vectors Qc j and y j = YQc j are called, respectively, the jth principal

factor and the jth principal component.

REMARK 5.  The solutions C k and D k of the system (*) are not unique.

All other solutions are obtained by the transformations

C k → C k T   ,   D k → T ' D k T

where T is an orthogonal matrix of order (k , k).

In fact, from

VQC k = C k D k    ,   C k' QC k = I k

we get (T ' T = Ik = T T ')

VQ(C k T) = (C k T)(T ' D k T)   ,   (T ' C k' ) Q(C k T) = T ' T = I k

and inversely.

Notice that, in this case, T ' D k T is symmetric but not more diagonal.

Moreover,

tr (T ' C k' QVQ C k T) = tr (T ' D k T) = tr (T T ' D k) = tr (D k) .

The solution C k is chosen because, as will become apparent below

(Section 5.2), it allows us to build up uncorrelated principal components.

It can also be shown that C k may be obtained by a step by step procedure

that maximizes the inertia explained by a linear variety of increasing

dimension (from 1 to k).
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5.2   MAIN PROPERTIES OF PRINCIPAL COMPONENTS

1. y j (j = 1 , ... , p) is a linear combination of the p vectors y1 , ... , yp ∈ Rn the

coefficients of which are represented by the elements of the principal

factor Qc j .

Moreover,

[ m1 m n]
y1 j

yn j

 = u'My j = u'MYQc j = 0 ,

namely the (weighted) arthmetic mean of y j is zero.

2. Setting

Y = y1 yp  = YQC p ,

it follows

Y 'MY = C p' Q VQ C p = D p .

This last expression indicates the covariance matrix of principal compo-

nents. It shows that principal components are uncorrelated (orthogonal)

with variances given, respectively, by λ 1 , ... , λ p .

Notice that

r(Y) = r(D p) = r(Y)

and

tr (Y 'MY) = tr (D p) = tr (VQ) .

3. Considering the relation (h = 1 , ... , r; r = r(D p) =r(Y))

Y'MYQ c h = λ h c h

and premultiplying both members by YQ, we obtain

YQY'MYQ c h = λ h YQ c h

or
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YQY'M yh = λ h yh .

This relation shows that yh represents an eigenvector of the matrix

YQY'M, obtained for the eigenvalue λ h > 0.

Of course, the eigenvalues different from zero of the matrices YQY'M

and VQ are the same with the same multiplicities.

4. Setting (h = 1 , ... , r)

yh = 1

λ h

yh = 1

λ h

YQ c h

where yh denotes the hth standardized principal component, premul-

tiplying both members by Y'M, we obtain

c h = 1

λ h

Y'M yh .

These two relations, called transition formulas, allow us to pass from c h

to yh and vice versa.

5. Since

YQ C p = Y ,

postmultiplying both members by C p'  we obtain

YQ C p C p' = YC p'

from which it follows (C p C p' = Q -1)

Y = YC p
' = y1 yp

c 1'

c p'

= Σ j y j c j' = Σ h λ h yh c h'  ,

the so-called reconstitution formula or singular value decomposition of

the matrix Y.

Of course, if the summation is limited to the first h* < r terms, we obtain
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an approximated reconstitution of Y, namely (h = 1 , ... , h*)

Y ≅ Σ h
h* yh c h' = Σ h

h* λ h yh c h'  .

6. The cosine of the angle formed by the vectors y j (j = 1 , ... , p) and yh

(h = 1 , ... , r) − the linear correlation coefficient r j h − is given by

cos(y j , yh) =
y j' M yh

σ j λ h

=
u j' Y'MYQ c h

σ j λ h

=
u j' VQ c h

σ j λ h

=
u j' λ h c h

σ j λ h

=
u j' λ h c h

σ j
=

λ h c h' u j

σ j
= r j h .

7. The orthogonal projection of y j (j = 1 , ... , p) on the subspace spanned by

the principal component yh (h = 1 , ... , r) is given by

yh (y h' Myh)
- 1 y h' My j = yh

1
λ h

c h' QY'MY uj = yh
1
λ h

c h' QV u j

= yh
1
λ h

λ h c h' u j = yh c h' u j = yh

σ j

λ h

 r j h .

8. The orthogonal projection of yi (i = 1, ... , n) on the subspace spanned by

the principal vector c j (j = 1 , ... , p) is given by

c j (c j' Q c j)
- 1 c j' Q yi = c j c j' Q Y' u i

= c j y j' u i = c j y i j .

5.3   CHOICE OF THE EUCLIDEAN METRIC IN THE INDIVIDUAL SPACE

The choice of the Euclidean metric in the individual space, the matrix Q ,

is probably one of the most delicate problem in PCA.

As we have said above (Section 2.2.1), this choice generally depends on

the measurement units and/or the variances of the variables x1 , ... , xp .

First, suppose that the variables x1 , ... , xp are expressed in the same

measurement unit and present approximatively the same variance.

In this case, the metric is usually chosen as Q = I p , which is equivalent
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to perform a PCA on the basis of the covariance matrix V.

Notice that, if we represent a change in the measurement unit by a con-

stant s > 0, we get

x1 xp  = X   →  s x1 s xp  = Xs
y1 yp  = Y   →  s y1 s yp  = Ys

Vc = λc   →  (s2 V)c = (s2 λ) c

and, thus,

y1 yp  = Y   →  s y1 s yp  = Ys

D p   →  D p s2 .

In other words, each new principal component is s times the correspon-

ding old principal component and has a variance s2 times the corresponding

old variance.

Second, suppose again that the variables x1 , ... , xp are expressed in the

same measurement unit but present considerably different variances.

 In this case, besides the effects of a change in the measurement unit

mentioned above, if we perform a PCA on the basis of the covariance matrix

V , those variables whose variances are largest tend to dominate the first

few principal components.

To illustrate the point in the simplest way, suppose that we have two

variables whose covariance matrix is

V =  9    0.5
 0.5    1

 .

Simple calculations show that y1 = y 1 0.9981 + y 2 0.0621, namely that the

first principal component is almost identified with the first variable, the

variable with the largest variance.

A solution may be found in choosing the metric

Q = Q1 / σ 2 = diag ( 1
σ 1

2
, ... , 1

σ p
2 )

which is equivalent to standardizing the variables x1 , ... , xp and to perfor-



PRINCIPAL COMPONENT ANALYSIS 31

ming the analysis on the correlation matrix R .

Yet, results of PCA based on R are generally different from the corre-

sponding results based on V .

Third, suppose that the variables x1 , ... , xp are expressed in different

measurement units.

In this case, it does not make sense to perform a PCA on the basis of the

covariance matrix V, because operations involving the trace of that matrix

have no meaning.

Moreover, setting

S = diag ( s1 , ... , s p )

where the constants s 1 > 0 , ... , s p > 0 represent a change in the meas-

urement units, we get

x1 xp  = X   →  s 1 x1 s p xp  = XS
y1 yp  = Y   →  s 1 y1 s p yp  = YS

Vc = λc   →  (S VS ) c* = λ* c*

and, generally, λ* ≠ λ and c* ≠ c.

Again, a solution may be found in standardizing the variables x1 , ... , xp

and in performing the analysis on the correlation matrix R .
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6   GRAPHICAL REPRESENTATION OF INDIVIDUALS

AND VARIABLES

6.1   GRAPHICAL REPRESENTATION OF INDIVIDUALS

Assuming that r = r(Y) ≥ 2, a graphical representation of the n individuals

y1 , ... , y n (measured in terms of deviations from the means) is usually

obtained by their orthogonal projections on the subspace C 2 spanned by the

first two principal vectors c1 , c 2 (principal plane).

Taking into account what was mentioned above (Section 5.2.8) and

denoting by yi the orthogonal projection of yi (i = 1, ... , n) on the principal

plane, we have

yi = c1 yi 1 + c2 yi 2

where yi j (j = 1, 2) denotes the ith element of the principal component y j .

Thus, the co-ordinates of yi relative to c1 , c 2 are (yi 1 , y i 2) (Fig. 7).

c1

c 2

y i

y i 1

y i 2

Fig. 7

0

•

•

•
•

•

A measure of the global quality of representation of y1 , ... , y n on the prin-

cipal plane is given by the index

GQRI = λ 1 + λ 2

λ 1 + ... + λ p
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which may be interpreted as that part of inertia of y1 , ... , y n explained by the

subspace C 2 (Remark 4).

REMARK 6.  Generally, the representation of the individuals on the principal

plane is judged to be adequate if GQRI equals or exceeds a predetermined

threshold (for example, 0.7).                                                                              

However, as the representation of y1 , ... , y n may be good even if some

individual yi is far from its orthogonal projection y i , it is necessary to

consider the quality of representation of each yi (i = 1, ... , n)

An index which may serve this purpose is given by the square cosine of

the angle formed by yi and yi , that is to say by

QR(i ; c1 , c 2) = 
(y i' Q y i)

2

(y i' Q y i) ( y i' Q y i)
 .

A high QR(i ; c1 , c 2) − for example, QR(i ; c1 , c 2) ≥ 0.7 − means that yi is

well represented by y i ; on the contrary, a low QR(i ; c1 , c 2) means that the

representation of yi by yi is poor.

Notice that an explicit expression of QR(i ; c1 , c 2) may be obtained taking

into account that we have the following identities

y i' Q yi = y i' Q P C 2 y i = y i' Q P C 2 P C 2 y i = y i' P C 2
' Q P C 2 y i = y i' Q yi

where P C 2 (QP C 2 = P C 2
' Q) denotes the orthogonal projection matrix on the

subspace C 2 , and

y i' Q yi = (c1 yi 1 + c2 yi 2)'Q(c1 yi 1 + c2 yi 2) = y i 1
2 + yi 2

2  ,

y i' Q yi = u i'YQY'u i = u i'YC p
' Q C p Y'u i = u i'YY'u i

= y i 1 y i p  
y i 1

y i p

= y i 1
2 + ... + yi p

2  .

Thus,
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QR(i ; c1 , c 2) = 
(y i' Q y i)

2

(y i' Q y i) ( y i' Q y i)
 = 

y i' Q yi

y i' Q yi

 = 
y i 1

2 + yi 2
2

yi 1
2 + ... + yi p

2
 .

Moreover, since we can write

QR(i ; c1 , c 2) = 
y i 1

2

y i' Q yi

 + 
y i 2

2

y i' Q yi

 = QR(i ; c1) + QR(i ; c 2)

where QR(i ; c j) (j = 1, 2) denotes the square cosine of the angle formed by

yi and its orthogonal projection on the subspace spanned by c j and is a

measure of the quality of representation of yi on that subspace, we are able

to attribute to each axis the due part of QR(i ; c1 , c 2) .

After having examined the quality of representation of each individual by

means of the index QR(i ; c1 , c 2) , we are in a position to correctly judge

proximities among their orthogonal projections on the principal plane: if two

individuals yi , y i* are close means that yi , y i* are close too, provided they

are well represented.

In interpreting results of the analysis, it is also important to examine the

contribution of each individual yi to the inertia λ j explained by c j .
Since

λ j = c j' QY'MYQ c j = y j' M y j = Σ i mi y i j
2  ,

an index often considered is

C(i ; c j) = 
mi yi j

2

λ j

 .

The usefulness of examining these contributions may be pointed out first

noting that, on the graph, only the co-ordinates of y1 , ... , y n relative to c j are

represented; thus, our attention falls on points with a high yi 1 , even if some

of these may have a small weight.

On the contrary, taking up the examination of contributions − as C(i ; c j)

depends both on mi and yi 1
2  − allows us to detect those individuals which

have contributed most to the inertia explained by the subspace under con-
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sideration, namely the individuals characterizing that subspace.

Of course, if the individuals all have the same importance − namely, if

M = diag ( 1
n , ... , 1n ) − examination of the co-ordinates relative to c j suffices.

Moreover, it may happen that the contribution of an individual relative to

the others is very high; in that case, it is advisable to perform the analysis

again after its exclusion from the data set and to reintroduce it as a «supple-

mentary» individual (Section 6.3). This allows us to appreciate differences

among remaining individuals, differences which might otherwise be difficult

to visualize on the graph since the point scatter is strongly conditioned by

the presence of an atypical individual.

6.2   GRAPHICAL REPRESENTATION OF VARIABLES

Assuming that r = r(Y) ≥ 2, a graphical representation of the p variables

y1 , ... , yp (measured in terms of deviations from the means) is usually

obtained by their orthogonal projections on the subspace S (y1 , y2) spanned

by the first two standardized principal components y1 , y2 .

Taking into account what we said above (Section 5.2.7) and denoting by

y j the orthogonal projection of y j (j = 1, ... , p) on S (y1 , y2), we have

y j = y1 σ j r j 1 + y2 σ j r j 2

where r j 1 and r j 2 denote, respectively, the linear correlation coefficients of y j

with y1 and y2 .

Thus, the co-ordinates of y j
 relative to y1 , y2

 are (σ j r j 1 , σ j r j 2) .

However, since we are mainly interested in representing linear correla-

tions between pairs of variables or between a variable and a principal com-

ponent and linear correlations are invariant if each variable is scaled by its

standard deviation, it is more suitable to work with standardized variables.
In that case, the orthogonal projection y j

* of the standardized variable

y j
* = y j σ j (j = 1, ... , p) on S (y1 , y2) is given by

y j
* = y1 r j 1 + y2 r j 2
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so that the co-ordinates of y j
* relative to y1 , y2 are (r j 1 , r j 2) (Fig. 8) and

hence it is very easy to distinguish those variables which are the most

correlated with a principal component and which play a significant role in its

interpretation.

y1

y 2

y j
*

Fig. 8

0 r j 1

r j 2

Of course, each y j
* (j = 1, ... , p) is inside a circle of centre 0 and radius 1

(the so-called correlation circle).

Moreover, the quality of representation of each variable on S (y1 , y2) can

be judged by means of the square cosine of the angle formed by y j
* and y j

*

which is given by ((y j
*)'M(y j

*) = 1)

QR(j ; y1 , y2) =
[(y j

*)'M( y j
*)]2

[(y j
*)'M(y j

*) ] [ (y j
*)'M( y j

*) ]
=

[(y j
*)'M( y j

*)]2

( y j
*)'M( y j

*)
.

A high QR(j ; y1 , y2) − for example, QR(j ; y1 , y2) ≥ 0.7 − means that y j
* is

well represented by y j
*; on the contrary, a low QR(j ; y1 , y2) means that the

representation of y j
* by y j

* is poor.

Notice that another expression of QR(j ; y1 , y2) may be obtained taking
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into account that

( y j
*)'M( y j

*) = (y1 r j 1 + y2 r j 2) 'M(y1 r j 1 + y2 r j 2) = r j 1
2 + r j 2

2

and (Section 5.2.6)

(y j
*)'M( y j

*) = (y j
*)'M(y1 r j 1 + y2 r j 2) =

y j'
σ j

 M (
y1

λ 1

r j 1 + y2

λ 2

r j 2)

=
y j' M y1

σ j λ 1

r j 1 +
y j' M y2

σ j λ 2

r j 2 = r j 1
2 + r j 2

2  .

Thus,

QR(j ; y1 , y2) = r j 1
2 + r j 2

2  .

On the other hand, since QR(j ; y1 , y2) also denotes the square distance

of y j
* from the correlation circle centre, we can see that well-represented

points lie near the circumference of the correlation circle.

Concluding, for well-represented variables we can visualize on the

correlation circle:

• which variables are correlated among themselves and with each

principal component;

• which variables are uncorrelated (orthogonal) among themselves and

with each principal component.

6.3 SUPPLEMENTARY INDIVIDUALS AND VARIABLES

In applying PCA, it often happens that additional information is available

besides that contained in the data matrix Y.

For example, we may have m additional individuals (measured in terms

of deviations from the means)

y n +1' = yn +1 , 1 yn +1 , p    , ... , y n + m' = yn + m , 1 yn + m , p

which belong to a control group and which cannot therefore be included in Y.
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Analogously, we might have q additional variables (measured in terms of

deviations from the means)

yp +1' = y1,p +1 yn ,p +1    , ... , yp + q' = y1,p + q yn ,p + q

which are of a different nature with respect to the variables contained in Y

and which we do not wish to incorporate in Y.

After having obtained − on the basis of the matrix Y − principal vectors

and principal components and represented the initial individuals and vari-

ables, we would like to place the m additional individuals and the q addi-

tional variables on the respective graphs.

The procedure for doing this consists of positioning the supplementary

individuals and variables on the graphs.

Of course, as before, the orthogonal projection matrix of a supplementary

individual on the subspace spanned by c1 , c 2 is

c1 c 2 c1 c 2 ' Q ,

and the orthogonal projection matrix of a supplementary variable on the sub-

space spanned by the first two standardized principal components y1 , y2 is

y1 y2 y1 y2
' M .
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7   OTHER APPROACHES TO PCA

7.1   THE APPROACH IN TERMS OF WEIGHTED SUM OF SQUARE DISTANCES

BETWEEN ANY PAIR OF INDIVIDUALS

Consider the n individuals y1 , ... , y n (measured in terms of deviations

from the means) with weights given, respectively, by m1 , ... , m n .

Let

di , i*
2 = (yi − yi*)'Q(y i − y i*)

the square distance between a pair of individuals (y i , y i*) (i , i* = 1, ... , n) and

D2 =
d1 , 1

2 d1 , n
2

dn , 1
2 dn , n

2

the corresponding square distance matrix (6).

Setting

d2 u' =
y1' Q y1

y n' Q y n

u' =
y1' Q y1 y1' Q y1

y n' Q y n y n' Q y n

 ,

ud2 ' = u y1' Q y1 y n' Q y n =
y1' Q y1 y n' Q y n

y1' Q y1 y n' Q y n

 ,

YQY' =
y1'

y n'

Q y1 y n =
y1' Q y1 y1' Q yn

yn' Q y1 yn' Q yn

 ,

it can easily be shown that

(6)   Of course, this matrix is symmetric and has the elements on the principal diagonal all equal to
zero.
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D2 = d 2 u' + ud2 ' − 2 YQY' .

Now, consider the weighted sum of square distances between any pair of

individuals, each square distance weighted by m i m i*.

We want to show that this last quantity, which can be written as

tr(Muu'MD2), is nothing other than twice Ig .

In fact, first we have (u'MY = 0 (1 , p))

tr(Muu'MD2) = tr(Muu'M(d 2 u' + ud2 ' −2 YQY' ))

= tr(Muu'Md2 u') + tr(Muu'Mud2 ') − 2 tr(Muu'MYQY')

= tr(Muu'Md2 u') + tr(Muu'Mud2 ') .

Then − since

tr(Muu'Md2 u') = tr(d 2 u'Muu'M)

= tr(d 2 u'M) = tr
m 1 y1' Q y1 m n y 1' Q y 1

m 1 yn' Q yn m n y n' Q y n

= tr
m 1 y1' Q y1 m 1 y1' Q yn

m n yn' Q y1 m n yn' Q yn

= tr(YQY'M)

= tr(Y 'MYQ) = tr(VQ)

= Ig

and, analogously,

tr(Muu'Mud2 ') = Ig ,

− we get

tr(Muu'MD2) = 2Ig .

Next, let

di , i*

2
= (P yi − Py i*)'Q(P yi − Py i*)

the square distance between a pair of projected individuals (P yi , P y i*) on Ck

and
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D
2 =

d 1 , 1
2

d 1 , n
2

d n , 1
2

d n , n
2

the corresponding square distance matrix.

Setting

d
2
u' =

y1' P 'Q P y1

y n' P 'Q P y n

u' =
y1' P 'Q P y1 y1' P 'Q P y1

y n' P 'Q P y n y n' P 'Q P y n

 ,

ud
2 ' = u y1' P 'Q P y1 y n' P 'Q P y n =

y1' P 'Q P y1 y n' P 'Q P y n

y1' P 'Q P y1 y n' P 'Q P y n

 ,

YP 'Q P Y' =
y1' P '

y n' P '

Q P y1 P y n =
y1' P 'Q P y1 y1' P 'Q P yn

yn' P 'Q P y1 yn' P 'Q P yn

 ,

it can easily be shown that

D
2 = d

2
u' + ud

2 ' − 2 YP 'Q P Y' .

Now, consider the weighted sum of square distances between any pair of

projected individuals, each square distance weighted by m i m i*.

We want to show that this last quantity, which can be written as

tr(Muu'MD
2
), is nothing other than twice Ig +Ck

.

In fact, first we have (u'MY = 0 (1 , p))

tr(Muu'MD
2
) = tr(Muu'M(d

2
u'+ud

2 '−2 YP 'Q P Y' ))

= tr(Muu'Md
2
u')+ tr(Muu'Mud

2 ') −2 tr(Muu'MYP 'Q P Y')

= tr(Muu'Md
2
u')+tr(Muu'Mud

2 ') .

Then − since

tr(Muu'Md
2
u') = tr(d

2
u'Muu'M)
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= tr(d
2
u'M) = tr

m 1 y1' P 'Q P y1 m n y 1' P 'Q P y 1

m 1 yn' P 'Q P yn m n y n' P 'Q P y n

= tr
m 1 y1' P 'Q P y1 m 1 y1' P 'Q P yn

m n yn' P 'Q P y1 m n yn' P 'Q P yn

= tr(YP 'Q P Y'M)

= tr(Y 'MYQP) = tr(VQP)

= Ig +Ck

and, analogously,

tr(Muu'Mud
2 ') = Ig +Ck

 ,

− we get

tr(Muu'MD
2
) = 2Ig +Ck

 .

Summing up, since we have shown that the weighted sum of square

distances between any pair of individuals is twice Ig  and that the weighted

sum of square distances between any pair of projected individuals is twice

Ig +Ck
, finding out the subspace maximizing the inertia explained by Ig +Ck

(Section 5.1) is equivalent to looking for the subspace maximizing the

weighted sum of square distances between any pair of projected individuals.

In other words, with this interpretation the criterion consists of finding

out the subspace modifying as little as possible the weighted sum of square

distances between any pair of individuals when passing to Ck .

7.2   THE APPROACH IN TERMS OF GLOBAL VARIABILITY AND GENERALIZED

VARIANCE

Consider the problem of finding out (Section 5.1)

Max
C k

 tr{C k' QVQC k} = Max
C k

 tr{C k' Q Y'M Y QC k}   , C k' QC k = I k .
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Since ch' QY'M YQ ch is the variance of the hth (h = 1 , ... , k) linear

combination YQ ch of the p variables y1 , ... , yp (measured in terms of

deviations from the means), we realize that the above-mentioned problem is

equivalent to maximizing the global variability of the k linear combinations

YQ c1 , ... , YQ ck of y1 , ... , yp under the constraint C k' QC k = I k .

Of course, C k = [ c 1 c k ] is a solution of this problem and

tr{Ck' V Ck} = Σ h λ h .

Instead of considering tr{C k' Q V QC k} as a measure of the variability

of the k linear combinations YQ c1 , ... , YQ ck of y1 , ... , yp , we also may refer

to det{C k' Q V QC k} , namely to the so-called generalized variance.

In this case, the problem becomes

Max
C k

 det{C k' Q VQC k}   ,   C k' QC k = I k .

It can be shown (7) that C k = [ c 1 c k ] is a solution and that

det{Ck' V Ck} = Π h λ h .

7.3   THE APPROACH IN TERMS OF SUM OF SQUARE LINEAR CORRELATION

COEFFICIENTS BETWEEN A NORMALIZED LINEAR COMBINATION OF THE

ORIGINAL VARIABLES AND EACH ORIGINAL VARIABLE

Consider the problem of finding out a normalized variable y (1) , linear

combination of y1 , ... , yp , maximizing the sum of the square linear corre-

lation coefficients between y (1) and each y j (j = 1 , ... , p).

Denote by y  a generic normalized linear combination of y1 , ... , yp .

Since we have (y 'M y = 1)

(7)  A proof is given in Jolliffe on pp.15-16.



44 RENATO LEONI

Σ j cos2 (y , y j) = Σ j
(y 'M y j)2

σ j
2

= Σ j

y 'M y j y j'M y
σ j

2
= y 'M (Σ j

y j y j'
σ j

2
) M y

= y 'M ( y1 yp  Q1 / σ2

y1'

yp'

) M y = y 'M Y Q1 / σ2 Y 'M y ,

we must find out

Max y 'MYQ1 / σ 2 Y' M y   , y 'M y = 1 .

y

As can easily be seen, a solution of this problem is given by the nor-

malized eigenvector y (1) of the matrix Y Q1 / σ 2 Y 'M associated with the

eigenvalue λ 1, and that Σ j cos2 (y , y j) = λ 1.

Thus, assuming that Q = Q1 / σ 2 , y (1) equals y1 , the first standardized

principal component.

Of course, an analogous meaning may be attributed to each of the sub-

sequent standardized principal components.

7.4 THE APPROACH IN TERMS OF THE MULTIVARIABLE LINEAR MODEL

The other approach we would like to mention is based on the multi-

variable linear model.

To this end, first remember that this latter can be expressed in the form

Y1 = Y2H 2 + E 2

where

• Y1 is the matrix, of order (n , p1), of the observed values of p1

dependent variables, measured in terms of deviations from the means;

• Y2 is the matrix, of order (n , p2), of the observed values of p2 inde-

pendent variables, measured in terms of deviations from the means;
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• H 2 is a matrix, of order (p2 , p1), of unknown coefficients;

• E2 is a matrix, of order (n , p1), of «residuals».

In order to determine the matrix H 2 , we can choose a least squares

criterion, which means finding out

Min  tr {(Y1 − Y2H 2)'M(Y1 − Y2H)Q} .
H 2

Of course, assuming that r (Y2) = p2 , the best solution is given by H 2

= (Y2' MY2) -1 Y2' MY1 .

Now, in case Y1 = Y2 = Y, consider the model

Y = YH + E

from which is clear that, without any assumption regarding the matrix H, of

order (p , p), the best solution is trivially given by H = I p .

Then, assume that H has rank h* < r = r(Y), so that it may be written in

the form (F and G of order, respectively, (p , h*) and (h* , p))

H = FG

with r(F) = r(G) = h*.

Our model becomes

Y = YFG + E

and we propose to find out

Min  tr {(Y − YF G)'M(Y − YF G)Q}   ,   F 'Y'MYF = I h * .
F,G

To this end, first notice that, taking into account the constraint on the

matrix F, our problem lies in finding out

Min  {tr {Y 'MYQ} − 2tr {Y 'MYF GQ} + tr {G 'GQ}}   ,   F 'Y'MYF = I h *
F,G

or, equivalently,
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Max {2tr {Y 'MYF GQ} − tr {G 'GQ}} ,   F 'Y'MYF = I h * .
F,G

Now, consider the Lagrange function

L(F ,G,L) = 2tr {Y 'MYF GQ} − tr {G 'GQ}} − tr {(F 'Y'MYF − Ih *) L}

where L = L' is a matrix of Lagrange multipliers of order (h* , h*).

At (F , G , L) where L(F ,G,L) has a maximum, as can easily be verified,

it must be

Y'MYQG ' = Y 'MY F L

F ' Y'MY = G

F ' Y'MYF = I h * .

Therefore, we must find out solutions of the system

Y'MYQG' = Y 'MY FL
F' Y'MY = G
F' Y'MYF = I h *

in the unknowns F,G,L.

But, premultiplying the first equation by F' and taking into account the

remaining equations, we obtain

F' Y'MYQY'MYF = L .

This matrix has n eigenvalues λ 1 , ... , λ n of which r = r(Y) are positive,

the remainder zero.

Then, associate to the first h* positive eigenvalues λ 1 , ... , λ h * the h*

orthonormal eigenvectors y1 , ... , y h * .

Setting

D h * = diag (λ 1 , ... , λ h *)   , Yh * = y1 y h *  ,

we can write

YQY'MYh * = Yh * D h *   ,   Yh *' MYh * = I h *
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and also

Yh *' MYQY'MYh * = D h * .

Thus, y1 , ... , y h * are the first h* standardized principal components of VQ .

Thus,we immediately realize that

F = QC h * D h *
-1/2

   ,   G = F ' Y'MY = Yh *' MY   ,   L = D h *

represent a solution of our problem.

Summing up, both F and G can be interpreted in terms of principal factors

and standardized principal components.

In fact, while F is linked to the matrix QC h * of the principal factors by

means of the matrix D h *

-1/2
, G, as is at once apparent, represents the matrix

of the coefficients of the orthogonal projection of Y on the subspace spanned

by the column vectors of the matrix

Yh * = Y QC h * D h *
-1/2

 = YF .

Notice that, since (VQC h * = C h * D h *)

H = F G = QC h * D h *
-1/2

D h *
-1/2

C h *' QV

= QC h * D h *
-1

D h * C h *' = QC h * C h *'  ,

we get

YH = YQ C h * C h *'  = Yh * C h *'  = Σ h
h*

 yh c h'  .

Namely, YH is an approximated reconstitution of Y (Section 5.2.5).
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