Space prediction models: an application to agricultural data

E. Dreassi, A. Petrucci, E. Rocco

Università degli Studi di Firenze
Space prediction models: an application to agricultural data

Dreassi E, Petrucci A, Rocco E

Dept. of Statistics “G. Parenti”, University of Florence, Italy

Abstract

Space prediction, based on individual data, has been widely used in several applications and many advances have appeared in literature. This paper aim is to discuss an application of a hierarchical space Bayesian prediction model at unit level to an agricultural data set, where the geographical location of each unit is known and the response variable is a zero-inflated count variable. The results of our study show that, when a large amount of spatial heterogeneity is present in the data, prediction at unit level may be not suitable.

1 Introduction

In environmental analysis, over-dispersed and zero-inflated count variables are usually present. Space count regression models for individual data with this characteristics have been recently widely developed in literature and used on several application fields (i.e. Stein et al., 1998 and Ridout et al., 1998). The aim of this paper is to investigate the application of these methods to agricultural data. Precisely, the opportunity to use individual data is discussed analyzing the results of the application of a hierarchical space Bayesian model (Banerjee et al., 2004) at individual level, taking into account zero inflated data, to predict surface area allocated to grapevines by farms in the province of Florence (Italy). The opportunity to use individual data is given by the Fifth Italian Agricultural Census driven in the year 2000 which first registered the geographical location of each farm (Bocci et al., 2006).

This paper is organized as follows. Data are described in Section 2. The model used to predict the surface area allocated to grapevines is presented in Section 3. Results and final remarks are reported in Section 4.

2 Data

The Italian Statistical Institute (ISTAT) drives a two-yearly sample Farm Structure Survey (FSS). In this survey the unit of observation is the farm and for each farm are registered the data on the surface areas allocated to different crops. In this study we use the data on the farms of the Florence
province collected by the FSS driven in 2003 in order to test an individ-
ual prediction model of the surface area allocated to grapevines. We focus
on its prediction for all the farms of province included in the Fifth Italian
Agricultural Census driven in the year 2000. The most important feature
of the Fifth Italian Agricultural Census is the registration of the geograph-
ical location of each farm which allows us to define a space model at unit
level. Before the 2000 census the more detailed geographical information
available for each farm was the name of the municipality (44 in the province
of Florence). Thus only aggregate models at municipal level were usable.

Although the response variable, surface area allocated to grapevines,
refers to one of the main cultivation of the Florentine area, it includes many
structural zeros. The reason is that the morphological characteristics of
the territory are not encouraging in all the province’s area for grapevine
cultivation and sometimes in specific sub areas the type of cultivated crop
depend on the traditions, thus many farms do not cultivate grapevines.
About the 25% of the farms in the 2003 FSS sample shows zero grapevine
surface area; most of them can be considered as structural zeros. Not only
the presence of many farms with zero surface area allocated to grapevine
but also the presence of many farms with modest extent of it and few farms
with a large grapevines surface made the variable highly positively skewed
and over dispersed.

Besides the geographical location many other variables are available for
each farm. Among them we select the surface area allocated to grapevines
at 2000 census time, the surface area allocated to grapevines at 1990 census
time and the European size unit (UDE) at 2000 census time as covariates for
the specified model. The latter variable is a stratification variable in the FSS
sample design and is based on the size of the farm. It is the stratification
variable for the sample at the provincial level which is composed by a group
of self-representative farms and the other sampled farms are arranged in
three classes of UDE.

The mean grapevine surfaces, at aggregate municipality level, recorded
at Census 2000, are showed in Figure 1. The FSS sample used to estimate the
model’s parameters results from merging three different sources of individual
data and his final size is 214. Figure 2 shows locations about the farms
included and not included in the FSS sample.

3 Statistical Model

We suggest a Hierarchical Bayesian model considering a ZIP formulation.
The likelihood is a mixture of two distinct processes governing respectively
the presence, or not, of area allocated to grapevines in the farm and, condi-
tionally on being positive, the grapevines mean surface area at 2003. The
first is a Bernoulli process and the second a truncated Poisson process.
The likelihood is re-parameterized as a mixture of two Poisson random
variables. Following Lambert (1992) we define
\[L(Y_i) = \pi_i p_1 + (1 - \pi_i) p_2 \]
where \(i = 1, \ldots, 214 \) indexes farm present in the FSS sample; \(p_1 \) is discrete
with mass point at zero, \(p_2 \) is Poisson\((\lambda_i)\) with mixing probability \(1 - \pi_i \).
For the Bernoulli process the logit of the probability having grapevines area
is modelled considering grapevines area in 1990 and 2000 censuses
\[\logit(\pi_i) = \alpha_0 + \beta_{1990} \times \text{area}_{1990} + \beta_{2000} \times \text{area}_{2000} \]
For the Poisson process the log of the area is modelled as follow:
\[\log(\lambda_i) = \alpha_0 + \beta_{2000} \times \text{area}_{2000} + \beta_{ude} \times \text{ude}_{2000} \]
where we specify a spatially structured Gaussian Exponential varying co-
efficient for ude\(2000\) measures. \(\beta_{ude} \) is the component of the vector \(\beta_{ude} \)
which is assumed to follow a MVN\((\mu, \Sigma)\) where MVN stands for Multivari-
at Normal distribution with vector mean \(\mu \), whose elements are assumed
to follow a flat Normal\((0, 0.1)\) distribution.

We defined a parametric distance function for the variance-covariance
matrix \(\Sigma \). A common assumption (Cressie, 1993) is the exponential decay
function:
\[\Sigma_{ij} = \sigma^2 \exp(-\phi d_{ij})^k \]
where \(\sigma^{-2} \sim \text{Gamma}(0.1, 0.1) \) controls the overall variability, \(\phi \sim \text{Uniform}(0, 10) \) controls the rate of decline of correlation with distance \(d_{ij} \), the Euclid-
ean distance between pairs of farms locations \(l, j \), and \(k \) controls the amount
of spatial smoothing. We opted for a pure exponential model choosing \(k = 1 \)
(see Diggle et al. 1998, page 323). Informative priors are specified on \(\phi \) and
\(\sigma^{-2} \) in order to get proper posteriors (Banerjee et al., 2004: page 131).

Spatial interpolation is a problem of prediction in space. In particular,
when we treat point data, the idea is to predict a new value of \(\beta_{ude} \) (say \(\beta_{ude} 0 \)) at a new point location (i.e. the locations of 12058 farms not present
on the FSS sample). This is straightforward in a Bayesian framework since
we have just to figure out the predictive distribution
\[
p(\beta_{ude} 0 \mid \beta_{ude}, \text{area}_{2000}) = \int p(\beta_{ude} 0, \theta \mid \beta_{ude}, \text{area}_{2000}) \, d\theta = \\
= \int p(\beta_{ude} 0 \mid \beta_{ude}, \theta, \text{area}_{2000}) \times \\
\times p(\theta \mid \beta_{ude}, \text{area}_{2000}) \, d\theta
\]
MCMC methods can be used taking advantage of the posterior sample \(\theta^{(1)}, \ldots, \theta^{(G)} \) from \(p(\theta \mid \beta_{ude}, \text{area}_{2000}) \) and the conditional normal dis-
tribution \(p(\beta_{ude} 0 \mid \beta_{ude}, \theta, \text{area}_{2000}) \) arising from the joint multivariate dis-
tribution of \(\beta_{ude} \) and \(\beta_{ude} 0 \) (Banerjee et al., 2004: page 132). The predictive
integral may be computed as a Monte Carlo mixture of the form

\[\hat{p}(\beta_{ude 0} \mid \beta_{ude}, \text{area2000}) = \frac{1}{G} \sum_{g=1}^{G} p(\beta_{ude 0} \mid \beta_{ude}, \theta^{(g)}, \text{area2000}) \]

In practice bypassing mixture calculation on use composition sampling drawing \(\beta^{(g)}_{ude 0} \) from \(p(\beta_{ude 0} \mid \beta_{ude}, \theta^{(g)}, \text{area2000}) \).

We used WinBUGS software for the MCMC estimation algorithm (see Spiegelhalter et al., 2000). Convergence has been assessed using Gelman and Rubin (1992) convergence test.

4 Results and final remarks

For each farm on the sample we estimated mixing probability. ZIP model for sampled farms shows about 23% of zero grapevines area according to descriptive analysis on the data.

Exponentialized posterior mean for parameters of the proposed model are very close to one for \(\beta_{2000p} \) and 1.95 for \(\alpha_p \).

Posterior mean for parameter of the Gaussian spatial Exponential model are \(0.022 \) for \(\phi \) and \(257.43 \) for \(\sigma \). The low value for \(\phi \) and the high value for \(\sigma^2 \) suggest the presence of a great spatial heterogeneity. This obviously affects the spatial distribution of the estimated \(\beta_{ade 0} \) coefficients; which posterior distribution means are reported in Figure 3.

The great spatial heterogeneity affects dramatically the results of our study and the scenario could even get worse considering aggregated data. Moreover, the implementation of a model with aggregated data does not satisfy the demand of estimates at small area level which is the primary advantage of using individual data. In fact the estimates can be given only at the municipality (or groups of municipalities) level.

We are aware that the results show a not completely good performance of the applied model. In any case, the study copes with a practical situation where the main challenge is to investigate the spatial heterogeneity of the data. The spatial heterogeneity is a critical features of the data and affects the effective prediction model even in presence of detailed auxiliary information.

Acknowledgement The research was partially supported by COFIN-2005 (PRIN 2005132407) and COFIN-2006 (PRIN 2006131039).

References

Figure 1. Data on grapevines surface mean at municipality aggregate level at Census 2000
Figure 2. Data: • farms present and ○ farms not present on 2003 FSS sample
Figure 3. Predicted spatially varying coefficient $\beta_{xde \ 0}$
Copyright © 2008

E. Dreassi, A. Petrucci, E. Rocco