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ABSTRACT

Given a set of continuous variables with missing data, we prove in this paper that the
iterative application of a “least-squares estimation/multivariate normal imputation” pro-
cedure produces an efficient parameters estimator and is therefore an optimal parametric
technique for imputation of missing data. There are two main assumptions behind our
proof: (1) data are missing at random (MAR); (2) the data generating process is a multi-
variate normal linear regression. Disentangling the problem of convergence of the iterative
procedure, we show that the estimator is a “method of simulated scores” (a particular case
of McFadden’s “method of simulated moments”), thus equivalent to maximum likelihood

if the number of replications is conveniently large.
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1 Introduction

Missing data are a serious problem in almost all areas of empirical research. Sample
surveys in economic, social and behavioral science frequently suffer from missing data due
to nonresponse as well as biomedical applications involving missing data in surveys and

experiments.

There are three major problems created by missing data. First, if the nonrespondents
are systematically different from the respondents and we do not take into account the
difference, analysis may be biased. Second, missing data imply loss of information, so
estimates will be less efficient than planned. Finally, standard statistical methods are

designed for complete data sets and missing data make the study more complicated.

Survey datasets often consist of large number of variables. Let be Y the n x p matrix
of complete data, if missing values regard one and only one variable of the dataset, we
deal with univariate nonresponse; otherwise, when missing values regard more than one
variable of the dataset, we deal with multivariate nonresponse. Let R denote a n x
p matrix of indicator variables whose elements are zero or ones depending on whether
the corresponding elements of ¥ are missing or not; the matrix R describes the pattern
of missingness. To be more specific, a missingness pattern is a unique combination of

response status (observed or missing) for Y.

The pattern of missing data is a very important element if our aim is to deal with missing
values, in some way. Such a pattern frequently depends on the variables being considered;
in fact, different variables often have different rates of missingness (for example, income

usually has higher nonresponse rate than gender).

A different problem is whether Y and R are associated, that is whether missingness
depends on the values of the survey variables. For example, if income is a variable
with missing data, we wonder if missingness depends on income or other variables in the
dataset. Such a question regards the missing data mechanism and is the crucial issue in

determining the extent of nonresponse bias.

Besides teoretical problems like bias, data analysts also meet a big practical problem
when dealing with datasets affected by missing values: tools for effectively dealing with
them are not readily available. The simpler and standard treatment of missing data
in statistical-packages is the complete case analysis (CC), where cases with any missing
values are simply discarded, forcing the incomplete dataset into a a rectangular complete-
data format. When the incomplete cases are a small fraction of all cases (say, five percent
or less) then CC method can be a reasonable solution to the missing data problem.
However when missing values occur on more than one variable, the incomplete cases are
often a substantial portion of the dataset and the CcC strategy may cause a large loss of
information. Moreover, omitting a substantial portion of data from the analysis will tend

to introduce bias, to the extent that the unobserved cases differ systematically from the



completely observed cases.

Another way to estimate the unknown parameter 8 of the probability distribution P(Y'|6),
when Y is not completely observed, is to compute the maximum likelihood estimates (ML)
of a model for the joint distribution of Y. Many papers refer to this approach, particularly
Anderson (1957) introduced the idea of factoring the likelihood to obtain explicit ML
solution for monotone missing data pattern and Gourieroux and Montfort (1981) applied
Anderson’s method to the regression with missing covariates. However, ML for a general
pattern of missing data requires iterative methods (this topic is dealt with in Section
3.1). The general technique for finding ML estimates for parametric models when data
are not completely observed is the EM algorithm (Dempster, Laird, Rubin, 1977). EM
spawned a revolution in the analysis of incomplete data making possible to compute
efficient parameter estimates and thus obviating the need for ad-hoc methods like CC in
many statistical problems. However, EM provides only point estimates of the unknown
parameters so, even if they are efficient, they are not useful to obtain valid inferential
conclusion unless there is some measure of uncertainty associated with them. Such a
disadvantage addresses the discussion towards the main applied approach to the general
problem of obtaining valid inferences when facing missing data: the Multiple Imputation
technique (MI).

The idea behind MI was explicitly proposed in Rubin (1978) and a decade later the basic
reference textbook was published (Rubin, 1987). MI is a technique in which each missing
values is replaced by m > 1 simulated values. After the multiple imputations are cre-
ated, m plausible versions of the complete data exists, each one is analyzed by standard
statistical methods. The results of the m analyses are then combined to produce a single
inferential statement that takes account of the uncertainty due to missing data. However
the task of generating multiple imputations is often a hard task, except in some simple
cases such as datasets with only one variable affected by missing values or very special
patterns of missingness; the main difficulty is to find a solution for imputing a general
pattern of missing data preserving the original association structure of the data. The cur-
rently avaliable solution to this problem is to create multiple imputations specifying one
“encompassing multivariate model” for the entire data set (at least conditional on com-
pletely observed variables), and then using fully principled likelihood/Bayesian techniques
for analysis under that model. This generates a posterior distribution for the parame-
ters of the model and a posterior predictive distribution for the missing values (given the
model specifications and the observed data). The primary example of such approach is
the Schafer’s freeware (Schafer: www) based on Schafer (1997), which involves iterative
Markov Chain Monte Carlo ( MCcMC) computations; the other similar concept software
is the “IVE-ware” of Raghunathan (Raghunathan:www) to which we will refer thorough
the paper.

Rubin (2000) explains the advantage and disadvantage of the previous mentioned ap-

proach; among the disadvantages, we point out on the fact that iterative version of soft-



ware for creating multiple imputations are not always yet ready for real applications by
the typical user dealing with missing data; it often needs experts to face with potentially

misleading “non convergent” McMC and any other possible difficulties.

In this paper we introduce a method, feasible for data analysts, for creating multiple

imputations when we deal with a general missing data pattern of continuous variables.
We assume that:

1) missing data are Missing At Random (MAR) and the missing data mechanism is ig-

norable;
2) the data generating process is a multivariate normal linear regression;
3) all the covariates of these parametric regressions are fully observed.

We obtain the m imputed datasets by repeating m times (each time till convergence)
the iterative “least-squares estimation/multivariate normal imputation” procedure. The
properties of the defined estimator are analyzed showing that, at convergence, the esti-

mator obtained using the iterative procedure is a simulated scores estimator.

In Section 2 we define the notation and the background for dealing with missing data

problem.

In Section 3 we define the model and derive the maximum likelihood estimator, evidencing

the practical difficulties involved in complex missingness patterns.
Section 4 defines the imputation function, given the parameters values.

Section 5 regards the “feasible” imputation technique, that is an iterative procedure that
imputes missing values, given previously estimated parameters, and estimates parameters,
given previously imputed values. It is first presented with a “reduced form” approach,
that solves the problem in principle, but still encounters practical difficulties in case of
complex missingness patterns; then it is presented with a “structural form” approach,

which presents no difficulty in the practical application to complex cases.

In Section 6 we first prove that the two approaches of the previous section are “alge-
braically equal”. This enables us at using in the subsequent proofs the reduced form
approach, which is analytically more tractable, still keeping the structural form approach
as the method to be used in practice. Then we derive the asymptotic properties of the
parameters estimator. We show that it is a “method of simulated scores” estimator (Mss,
see Hajivassiliou and McFadden, 1990, a particular case of McFadden’s (1989) method
of simulated moments MsM), we discuss its aymptotic variance-covariance matrix, and

show how its efficiency can be made arbitrarily close to that of maximum likelihood.

Finally the problem of multiple imputation is again considered in Section 7. For preci-
sion’s sake, we inform the reader that thorough the paper we always refer to a “single”

imputation; this makes explanations easier, without loss of generality.

Appendices 1, 2, 3 give more analytical details on methods and proofs.
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Table 1: Dataset with missing values.

2 Statement of the problem of missing data

A schematic representation of an incomplete dataset is shown in Table 1, where the n
rows represent the observational units and the p columns represent variables recorded
for those units; question marks identify missing values; they can occur anywhere, in any

pattern.

Let Y denote the n x p matrix of complete data and let y. denote the ¢—th row of
Y (: = 1,...,n), assuming the rows as independent, identically distributed (i.i.d.) the
probability density of the complete data may be written

n

PY0) =TT f(v:l0) (2.1)
=1
where f is the probability density function for a single row and 8 is the vector of unknown

parameters.

Formally, let Y,;s denote the observed portion of Y and let Y,,;s denote the missing portion,
so that Y = (Yops, Yonis)-

2.1 The missing data mechanism

Let us now consider the missing data mechanism; our hypothesis, thorough this paper,
is that the missing data are missing at random (MAR). We start explaining the concept
related to the missing data mechanism adopting an informal way. If missing data on
income are due to the fact that only a random subsample of the entire sample had to
answer to question regarding income, we are sure that missingness is unrelated to the
survey variables; in such a case the missing values are Missing Completely At Random
(MCAR ). In many practical instances the MCAR assumption is not realistic, so the
important issue concerns whether differences in characteristics of nonrespondents and
respondents can be captured in terms of observed values, the so called Missing At Random
(MAR) case. For example, if income is missing and age is fully observed, missing data

are MAR if missingness on income depends only on age; in such a case the nonresponse



bias can be controlled by an analysis that stratifies on age or adjusts for age in some way;
however, if for subjects of a given age missingness of income depends on the income values,
then the missing data are not M AR since missingness depends on values of a variable that

is sometimes missing.

Let now consider the formal definition in terms of probability model of the missingness
(Rubin, 1976), introducing the MAR concept in terms of probability. Let R be the n x p
matrix of indicator variables, and let ¢ be the unknown parameters of the probability
model for R, P(R|Y,¢). The missing data are MAR if the distribution P(R|Y,¢) does not
depend on Y, that is:

PURY g, Yoins€) = P(RIYopn, €). 22)

A special case of MAR mechanism is the MCAR (Missing Completely at Random), in this
case the missing data values are a simple random sample of all the data values so:

P(Rn/obsvymisaf) = P(R|€) (23)

Obviously MAR is less restrictive than MCAR because it requires only that the missing
values behave like a random sample of all the values within a subclass defined by observed
data.

2.2 Maximum likelihood assuming ignorable nonresponse

The method of maximum likelihood for incomplete data, in general, requires specification
of a model for the distribution of ¥ and R, so that

P(Y,R|,€) = P(Y]0)P(R|Y,€). (2.4)

If Y were completely observed, the likelihood of § and ¢ would be as in equation (2.4); in
this case the unknown elements of the likelihood would be 8 and ¢, because Y would be
fixed at their observed values (and all elements of R are = 1); so the maximum likelihood

estimates would be obtained maximizing (2.4) with respect to 6 and €.

In presence of missing values in the Y matrix, the likelihood of # and ¢ is proportional
to the marginal density of the observed part in Y and R, treated as a function of # and
&, with Y,;,s and R fixed at their observed values. This likelihood is obtained formally by
integrating the joint density of ¥ and R with respect to the missing part Y,,;5, that is:

L(aafu/obsa R) = /P (i/obm szs|9) P (RD/obm Ymisa 5) dezs (25)
Maximum likelihood estimates of the unknown parameters § and ¢ are obtained by max-

imizing the function (2.5) with respect to 6 and &.

Maximum likelihood estimation for 8 is often considered without explicitly including a
model for the missing data mechanism. The likelihood ignoring the missing data mecha-

nism (Rubin 1976) is based on the marginal density of Y5, ignoring the contribution of



R to (2.5):
L(eufobs) = /P(ifob37ymis|9) dezs (26)

Maximum likelihood ignoring the missing data mechanism means maximizing (2.6) rather
than the full likelihood (2.5). The missing data mechanism is called ignorable if inference
about @ based on the likelihood (2.6) is equivalent to the inference about 8 based on the
likelihood (2.5).

Formally, Rubin (1987, pag.53) showed that the missing data mechanism is ignorable if
(i) 0 and ¢ are distinct parameters, that is, the joint parameter space of (8,¢) is the
Cartesian cross-product of the individual parameter space for 6 and &; (i) the missing
data are MAR.

Once ML estimates of the parameters have been obtained, asymptotic standard errors,
tests of hypotheses and confidence intervals can be derived by applying standard methods;
they have appropriate statistical properties provided large sample size. However compu-
tational difficulties are frequent when the parameters are high-dimensional; even worse,
sometimes it could be very difficult to write the likelihood function; this is particularly
the case of multivariate pattern of missing data. In conclusion, ML estimates for general

pattern of missing data requires long and boring application of iterative methods (Schafer,

1997; Chapter. 2, pag. 16).

3 Multivariate normal model

The multivariate normal distribution is a common baseline model for many data analysis.
In presence of missing values, it may be reasonable to use the multivariate normal model to
create imputations (Rubin, 1987), infact, even if the statistical analysis to be ultimately
performed on the data does not assume normality, it may be reasonable to make this
assumption for imputation purpose (often the assumption may be made more tenable
by applying suitable trasformation to one or more variables). For these reasons it is
convenient to consider the following model. Let be Y the n x p matrix and X a n x k given

matrix of complete data, assuming for Y the following multivariate normal distribution
y; ~ N(lz;, ), i=1.n

where y; is the i—column of the Y’ matrix, z; is the i—column of the X’ matrix, Ilz; is
the mean vector of the multivariate normal distribution, II denotes the unknown matrix

of coefficients (p x k) and ¥ the unknown (p X p) covariance matrix.

3.1 Maximum likelihood estimation

Assuming missing values distributed according to a general pattern, on any or all p vari-

ables, we can group the rows of the matrix according to their missingness pattern as



blocks. Having a p-variate distribution we can have 2?7 possible missingness pattern; if
p is large, it is plausible that not all possible patterns are represented in the sample.
Index the unique missingness pattern that actually appear in the sample by 6, where

6 = 1,2,..,A, and let D(6) denote the subset of the rows ¢ = 1,2,...,n that exhibit
pattern 6.

If the missing data mechanism is assumed ignorable, the likelihood of the parameters

6 =(I11,%) is:

2 _1 1
POYos) = T II IZ6]% exp {—2 (y: — szi) X5 (yi — Hm)} (3.7)
6=1ieD(5)

where y! denotes the observed part of row ¢ of the data matrix, and llsz;and Y5 denote the
subvector of the mean vector and the submatrix of the covariance matrix ¥, respectively,
that pertain to the variables observed in pattern 6. If any rows of the data matrix
are completely missing, those rows drop out of the likelihood function P(0]Yy); in fact
under the ignorability assumption these rows do not contribute to the inference and can

be ignored.

For monotone missing data patterns, explicit estimates of (1I,X) that maximize (3.7)
can be derived (Rubin, 1974) using Anderson’s (1957) method of factored likelihoods. The
parameters (II,Y) are transformed in such a way that the likelihood factorizes into distinct

factors corresponding to complete data problems (Little, Rubin, 1987).

For non monotone missing data patterns, maximization of (3.7) requires an iterative
alghoritm, because we are not able to write an explicit closed form for the ML estimator

of the means, variances and covariances.

To understand the problem in case of non monotone missing data patterns, we start from
a simple case: instead of a p-variate normal distribution, we consider a bivariate normal
distribution Y = (Y7, Y3), with a single column matrix X of complete data. This is one
of the smallest possible cases (in terms of dimensions), and we shall use it often in this
paper, as it helps to simplify the study without substantial loss of generality. We specity

the data generating process as follows:
Y =XII' + E=XII' + UX: (3.8)

where X is a given matrix X (n x 1) completely observed, II = [II; Il,]" denotes the
unknown parameter matrix (2 x 1), U = [u1,us] is a (n X 2) random matrix whose rows

have independent bivariate standard normal distribution, Y2 is a (2 x 2) matrix such

that Y3 %7 = % = l o o1 ] (for instance, Cholesky decomposition) and the rows
012 022
of E =UX: = [e1, €2] have bivariate normal distribution with 0 mean and X variance-

covariance matrix.

Let us consider the likelihood function L(II, X|Y] Y3) in the case of completely observed



XA YAl YA2 A — block
(X, Yi, V3] =|X5|Ya1|? |B — block
XC ? ch C — block
Xpl? |7 |D — block

Table 2: Bivariate dataset with missing values.

data:

n 12
L(IL X|Y] Y5, X) o |X] "2 exp {—2 Z (y; — May) 71 (y; — Ha:l)}
=1

and the log-likelihood function:

1
log L(IL, X|Y, Y;, X) = —g log || = STrE"H (Y = XII)' (¥ = XIV) =
n 12 B
3 log || — 2 >y — M) B (y; — ;)
=1

In order to obtain the ML estimates of the unknown parameters, we maximize the log-
likelihood function by differentiating the log-likelihood with respect to the unknown pa-
rameters using the rule of matrix differentiation (e.g. Amemiya, 1985, Appendix 1, The-
orem 21; a slight simplification in the formulas is obtained if differentiation is performed

with respect to X! rather than X), and equating derivatives to 0 as follows:

S(Y - XII) X =0 (3.9)
gz —;(Y—XH’)’ (Y — XII') = 0. (3.10)

We suppose now that missing data affect Y] and Y, according to a general pattern, while
X is completely observed. Grouping the rows of the matrix according to their missingness
pattern as blocks, we have 22 = 4 possible blocks. We indicate with A the block where Y}
and Y; are both observed, with B the block where Y] is observed and Y, is missing, with
C the block where Y] is missing and Y5 is observed and finally with D the block where Y;

and Y3 are both missing as in Table 2.

If the missing data mechanism is assumed ignorable, the log-likelihood function is the

following:
1
log L(II, XY, X) = —%4 log || — D) > (yi — ) 57" (y; — M)
1€EA

nB 1 2

——logoy — — a— o
9 g0n1 201 %:5 (3/ 1 1 )
nc 1 2

_? log 092 — 2022 ZEZC (yig - HZZEZ') s (3.11)



and the ML estimator of (II,X) can be derived maximizing (3.11), that is by solving the
normal equations

8log L(IL, 2| Yops, X)
ol

=0 (3.12)
and
Olog L(TL, ¥V, X)
ox-1
Expliciting the left hand side of (3.12) as a block matrix (the blocks are identified by
square brackets), we obtain

= 0. (3.13)

8log L(IL, £|Yops, X)
ol

:EA(Wh—Xmm’wh—&mm’ |22 (You — Xelly)||

022

[(Yaz — Xall)]' [22(Ver — XpIl)| [(Yor — Xella)]

011

) X (3.14)

and expliciting the left hand side of (3.13), we obtain:

alog L(H, ZD/Obs;X) _ anZ n nj 011 0'212 n ni % o129
oyt 2 2 \ o 2 2\ oy 09
1
3 (= ) (3= MY
1=A
(1 om
_5 012 ‘7%; Z (yil - Hla?i)Q
o1 o2, ) i=B
o 2 7] 2 (e M) (3.15)
oo 1=C

thus the score is written in explicit form. Even if we are dealing with a very simple case,
we are not able to obtain explicit estimates of (II, ¥). Maximization of (3.11) requires the

application of an iterative algorithm.

One can imagine, from the equations above, how complex the general case would be. The
expression of the score (eq. 3.14 and 3.15) is already complex enough even if the variables
y are only two, and so we have been able to group our data into the few blocks A, B,
C (plus D that does not contribute to the likelihood, as y is not observed in block D).
Should the number of variables y be p > 2, we should take into account explicitly up
to 27 blocks, each of which contributing to the likelihood in a different way, so that the

estimation procedure would be practically intractable.

4 The imputation function

Imputation replaces missing values by suitable estimates of the values, so that complete-
data methods can be applied to the filled-in data. For this reason the method is very

10



attractive to practitioners because the obtained complete data set can be handled using
standard methods.

In order to complete the data set we define an imputation function. This function is
defined “as if” the parameters of the data generating process were known. Of course,
in any real problem we do not know the true parameter values, so the next section will

develop a feasible procedure to estimate the unknown parameters.

Considering the data generating process introduced in Sec. 3, we first assume I = [II; II,]’

and ¥ = l o1 o1z ] as known. The imputation function builds a new data matrix,
012 022
expressed as a block matrix:
Yar Yao
> Ye1 Ym2
Y =b(Y,,)=| ~ , 4.16
(Yot Yor Yoo (4.16)
Ypi Ypo

. . . ! . . .
such that, indicating u; = (w1, u;2)" as random variates from a bivariate standard normal

distribution, the completed data are defined as follows:

yin = lha + /o1 ua .
o o2 e A (4.17)
Yo = oz, + ﬁj(yn - H1$i> 4+ 1/ 099 — 2 Uy

g11

yin = 1z, + /o1 un .
- o2 ,tEB (4.18)
Yz = HQxi + %(yil — lez) +1\/ 099 — —12 U9

011

Yiz = Lz, + \ /022 s .
_ . . ,ieC (4.19)
Y = lhz; + i(yn — 1) + (/o — i U1

ya = e + Jou ta .
- - 2 _ St€E€ED (4.20)
Yiz = laz; + % O11 Uiy + /022 — 12 Usg

The imputation function defined is rather simple. When the variables are both observed
(A-block) they are obviously left unchanged, and equation ( 4.17) writes their explicit
expression as given by the data generating process (3.8). It must be noticed that the
representation in equation ( 4.17) has been used to make easier the comparison with the
other equations. It includes explicitly the error terms w;; and wu;, which are independent
standard normal variables introduced by the data generating process (3.8). Thus the
error term of y;; is /o1y multiplied by u;. The expression of y;; includes the conditional
mean (given y;;), which is llyz; + (012/011)(ya — Hi2;) and the error term which is u;;

multiplied by the square root of the conditional variance \/oq9y — 02,/ 071;.

11



When one variable is observed and the other is missing (B and C-blocks), the observed
variable is obviously left unchanged (and is represented according to the data generat-
ing process 3.8), while the other is replaced by its conditional mean (given the observed
one) plus a zero mean pseudo-random error with the appropriate conditional variance
(equations 4.18 and 4.19, where @;; and ;, are independent standard normal deviates
produced by a pseudo-random number generator). Finally, when both variables are miss-
ing (D-block), imputation is performed using the unconditional mean plus a bivariate zero
mean pseudo random error with covariance matrix Y. Equivalently, as explicitly written
in equation (4.20), we first impute the value g;;, with the appropriate unconditional mean
and variance, then impute g;, with the appropriate conditional mean and variance (given
Yi1)-

Summarizing, the equations above define the conditional distribution of the variables with
missing data, given the observed data. Of course, this imputation technique is infeasible,

since the parameters Il and ¥ are unknown.

5 Feasible imputation methods

Let us consider the data generating process introduced in Sec. 3 , when missing data are
distribuited according to a general pattern. Introducing the imputation function (Sec. 4)
and assuming knowledge of the parameters § = (II,X), the imputation procedure is an
easy task. When the parameters have been estimated, the imputation of missing data is
still performed by means of (4.17-4.20), where the @’s are produced as standard normal
variates from a pseudo-random number generator, while parameters Il and ¥ are replaced
by convenient estimates. The topic we deal with in this section is how to estimate such
parameters in any real case, without considering explicitly the likelihood function stated

in terms of the possible 27 different blocks.

5.1 Feasible imputation for bivariate normal data: reduced
form approach

The estimation procedure directly considers the data generating process (3.8) and esti-
mates the unknown parameters by ordinary least squares (OLS) method. As there are no

“dependent” variables on the right hand side of (3.8), the system is in “reduced form”.

The estimation procedure starts building a system of two normal linear regression models
on the observed part of the data matrix (A-block); the reduced form coefficients (II)
are estimated by OLS method and ¥ (variance-covariance matrix) is estimated from OLS
residuals; then missing data are imputed by the imputation function defined in Sec.4 using
the estimates of Il and ¥ (see Appendix 1, Iteration 0). Once the iteration 0 is over, the

data matrix is completed and the procedure goes on, estimating by OLS the parameters

12



(II, X)) on the most recent completed data, and imputing again and re-estimating again
until convergence on the estimates of Il and ¥ is achieved (the complete iterative method
is explained in Appendix 1). In practice, by this method we estimate iteratively the
coefficients II®) and the residuals covariance matrix S*) of a two equations reduced
form system by OLS, and parameters estimates are used for imputing missing values. We
indicate with I[I*) the OLS estimation of the unknown parameter Il at the k-iteration (thus
using Y*~1 data completed at the end of iteration k — 1) and with E(k) = (égk), 5(2]“)) =
Y (=1 — XTI®) the corresponding residuals, from which we estimate S (k ). Supposing that
convergence is achieved at the k-iteration, we have (up to a reasonably large number of

digits) ﬁgk) = ﬁgk_l) and ﬁ(Qk) = ﬁ(zk_l), so the following conditions become true:

~(k=1) 1
€41

_(k=1)

€B1

(X/X>—1 X! Sy N %?(k_l) k-2 =0 (5.21)

11 - /\(k ) Uc

ak=1) (ke Slk=1)2
| s+ %féz V% i
(X)L i =0 (5.22)

P sy Sk
_(k-1)
A(k DV ‘711 Upy + J22 - /\(k 7 UD2

When convergence on 1l is achieved, the expression for Z(k), obtained from the k-th

iteration residuals, is as follows:

. (54)

~(k REATIN 1~k k=11 ~(k—1 ~(k—1 ~ ~

w o) = ) ;z+gz<>+(::l)) ctrvet o o4 - D))
22 22

5k-1) . (3$—1)) ~h-1) i
~(k-1 -1) - ~(k=1) ~1 ~
+2 }]3 ol J£1 ) _ RN €y Ucr+ ng ) U, Upy (5.23)
022 G322
~(k=1)\ 2 5(k=1) 2
~(k k)~ o ~(k=1)1 ~(k— ~(k— 12 k— ~
n 0{2) - ( )/ ( ) —I_ (A%i—l)) e(Bl l)le(Bl 1) —I_ Oéz 1) - (A(k—l)) e(Bl 1)/ UB2
o1 011
~(k=1) =1
o A(k=1)1 ~(k— (k- 12 ~(k=1) -
+A113—1)6(02 1)/6(02 Y + U§1 = (A(k—l)) €0y Ut
O39 022
— ~ ~ —~ — ~ — —~ — 2 ~ ~
+685 7 iy fipy +\f6% Vel Y — (6157Y) i, dip (5.24)

13
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We may regard (5.23-5.25) as the convergence condition for the iterative estimation of X.
The estimation/imputation procedure achieves convergence when equations (5.21-5.25)

are jointly solved.

5.2 Remark

If the data set with missing values is a generic n X p matrix, and there are missing
values in more than two variables, it is difficult to explicit the imputation function, as
we did in case of bivariate normal data with missing values. For each pattern of missing
data we should, in fact, specify the appropriate imputation function, with pseudo-random
errors that should be conditional on the Y-s observed in that pattern. Since there are
2P possibly different patterns of missingness, the technical solution would be very hard.
Also, there would be no substantial simplifications over the exact maximum likelihood
approach, where up to 27 different conditional densities should be specified, according to
which Y-s are observed in each pattern. As a consequence, the estimation/imputation
method proposed above has only “shifted” the technical difficulty from the likelihood to
the imputation function; thus, the technical problem is still unsolved. That’s why it is

preferable to work, in practice, with the structural form, as shown in the next section.

5.3 Feasible imputation for bivariate normal data: structural
form approach

If the data set with missing values is a generic n X p matrix, and there are missing val-
ues in more than two variables, it is difficult to explicit the imputation function, as we
did in case of bivariate normal data with missing values. As a consequence, the estima-
tion/imputation method proposed has shifted the technical difficulty from the likelihood

to the imputation function; thus, technical problem is still unsolved.

The way to solve such a technical problem is prompted to the “sequential regression mul-

tivariate imputation” (SRMI) approach adopted by the imputation software (IVE-ware).
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The method proposed by the authors of the software (Raghunathan, Lepkowski, Van
Hoewyk, and Solenberger, 1997) builds the imputed values by fitting a sequence of regres-
sion models and drawing values from the corresponding predictive distribution, under the
hypothesis of MAR mechanism, infinite sample size and simple random sampling. The
method follows a bayesian paradigm. Each imputation consists of ¢ “rounds”. Round
1 starts regressing the variable with the fewest number of missing values, say Y;, on X,
and imputing the missing values with the appropriate regression model. Assuming a flat
prior for the regression coefficient, the imputations for the missing values in Y; are drawn
from the corresponding posterior predictive distribution. After Y¥; has been completed,
the variable with the fewest number of missing values is considered, say Y3; observed
Y, values are regressed on (X,Y]) and the missing values are imputed, and so on. The
imputation process is then repeated in rounds 2 through ¢, modifying the predictor set
to include all the Y variables except the one used as the dependent variable. Repeated
cycles continue for a pre-specified number of rounds, or until stable imputed values occur

(convergence in distribution).

In order to make our method “feasible in practice” even when the number of variables with
missing values is grater than 2, we follow the SRMI method, but introducing a convenient

modification of the variance covariance matrix estimator.

According to the SRMI method the step 0 is essentially the same as the one introduced in
Section 5.1 (iteration 0). We estimate the coefficients of the linear regression model related
to the variable with fewest missing values (let be Y;), by OLS, using the Y; observed part
(Yops1). Suppose that I, = (X7 Xops) TP X!, Yops 1 is the regression coefficient and 4, =

obs
(1/nops) (Yob&l — Xobsﬁl) (Yobs,1 _Xobsﬁl) is the residual variance, then the imputed
value set is
Y1 = Xoisallh + Vo iy
where %, is the usual vector of independent pseudo-random standard normal deviates.

So we have a first set of completed values for Y and we attach it as an additional column
to X. We then regress the next variable with fewest missing values (say Y,s2 ) against
X and the completed Y] and use the OLS estimated coefficients and variance for an
imputation step that completes Y;. Going on, the first round ends when all the missing
values are completed. As the SRMI’s authors put in evidence, the updating of the right
hand side variables after imputing the missing values is dependent on the order in which
we select the variables for imputation. Thus, the imputed values for Y;, for example,
involve only (X, Yi,..., Yj_1), but not Y;4;... Y, For this reason the procedure continues
to overwrite the imputations for the missing values iteratively. After the first round, we
have complete data for all variables, part of wich are observed, part have been imputed
in the previous iterations. The system of regression equations has, as dependent variable
for each equation, the variable to be “imputed if missing” and has on the right hand side

all the others variables
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Y, = X’yn‘|‘1/2’)/12‘|‘1/3713+-“+1/]971p+61
}/2 = X’)/Ql+1/1’)/22+)/3723+'"+)/p’72p+52

Y, = Xy + Y1y +Yoys + o + Yo 1v +6p (5.26)
where 11,721, ...,7p1 are scalars or (k x 1) vectors depending on X being a single col-
umn or a (n X k) matrix, while all the other v are scalars and €= (e1,¢3,...,¢,) has a

multivariate normal distribution.

Equations (5.26) represent a system of simultaneous equations in structural form, as the
jointly dependent variables Y appear also on the right hand side of the equations. A
convenient representation of the system in structural form (that will be used in the next
section) is

BY' +TX' =€/, (5.27)
that is, for the ¢-th observation (¢ =1,...n)

By + Tz; = ¢, (5.28)

where the matrices of the structural form coefficients are

1 Y12 T3 e —V1p ~—T1

— 1 —Y23 e -

Bloxp) = Y22 V23 Y2p and T () = Y21
—Yp2z  TYp3 e —Vpp 1 _71/91

(the dimensions of I being: p x k, where k is the number of columns of X).

We remember that we can easily derive the reduced form (or “restricted” reduced form,
e.g. Greene, 2000, Sec. 16.2.3) “solving” the structural form system (5.28) for y;

y; = —B_lrmi + B_léi = Ilz; + ¢ (529)

A structural form model like (5.26) is underidentified, as it violates the order condition
for identification (eg. Greene, 2000, Sec. 16.3.1): infinite sets of y-values would be
observationally equivalent. It is therefore useless (or impossible) to apply the estima-
tion techniques suitable for simultaneous equation systems, like two or three stage least
squares, full information maximum likelihood, etc. Nevertheless we can estimate each
equation separatly by OLS as in SRMI approach. After coefficients have been estimated
by OLS, we compute from the residuals the estimates of the variance covariance matrix
as U = (1/n) (EY’ + fX’) (EY’ + fX’)’. Differently from the SRMI method, we use the
Cholesky decomposition of the matrix ¥ to produce vectors of pseudo-random numbers

for imputation, thus considering also covariances besides variances.
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When a value of Y] is missing, we impute the value obtained from the right hand side of
the first equation in (5.26), where the 7 -s are at the last estimated value, the value(s) of
X is (are) observed, the value of the e-s are produced by the pseudo-random generator
with a variance-covariance matrix equal to the last estimated V. The same is done for all

missing values of the Y5, ...Y,, variables.
Repeated cycles continue until convergence on the estimated parameters has been achieved.

The transformation between structural form and reduced form helps to answer a question
that naturally arises when dealing with an iterative simulation-based method: why and
when does the the iterative estimation/imputation procedure converge? (Even if the
McMcC context is different from our context, still recently Horton and Lipsitz, 2001, p.

246 points out that convergence “remains more of an art form than a science”).

And, in fact, it is not at all obvious how convergence is achieved if we only consider the
procedure as it has just been described. But we may think at the sequence of iterations
in a different order, as if iterations were “grouped”. Let’s first see what happens if we
keep parameter values fixed (the v -s and the Cholesky decomposition of the matrix \Tl),
and iterate substitutions of imputed values on the right hand side of equations (5.26).
These iterated substitutions (e.g. Thisted, sec. 3.11.2) are “exactly” the steps of the well
known Gauss-Seidel method for the “simultaneous solution” of the (5.26) system (also
called “stochastic simulation” of the system, because of the presence of the € terms). We

get, therefore, the following

Proposition 1 For fized values of the structural form parameters, the iterated substitution
of imputed values converges to the reduced form derived from the structural form (or

“restricted” reduced form, equation 5.29).

Now we can re-estimate parameters (with OLS on the structural form) and start again a

new cycle of iterated substitutions in (5.26), and so on.

The strictly thighted sequence of estimations and imputations for each structural equa-
tion is thus disentangled and converted into a sequence of iterations that are conceptually
much more manageble. In each iteration, an OLS estimation of “all” the structural form
equations (5.26), using observed and previously imputed values, is followed by the simul-
taneous solution of the equation system (or derivation of the reduced form 5.29) that
produces “all” the values of the variables y to be imputed. Studying the convergence of
this new sequence of estimation and imputation phases becomes more manageable, as it

will be clear in Section 6.

The SrRMI method and the one just proposed follow different paradigms, the former is
based on the bayesian paradigm and the latter on the frequentist paradigm. Beyond
this difference, it is important to put in evidence the main technical difference. The
SRMI method draws the random normal deviates of the imputation step for each equation
“independently”; the method we propose considers stochastic terms still drawn from a

normal distribution, but having variance-covariance matrix W.
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6 Properties of the estimator obtained by the fea-

sible imputation methods

The properties of the estimated parameters obtained at convergence of the iterative es-
timation/imputation method are not evaluated considering the structural from, because
the system is underidentified. To show the “good” properties of the estimator discussed

above, we introduce and show in sequence the following propositions:

Proposition 2 The reduced form parameters estimator, derived from the the OLS estima-
tor of the strucural form parameters, is equal to the OLS direct estimator of the reduced

form parameters.

Proposition 3 The OLS estimator of the reduced form parameters, at convergence of the
estimation/imputation procedure, is a MSS (Method of Simulated Scores) estimator with
“one” replication (Hajivassiliou and McFadden, 1990).

The proofs for both propositions consider, without loss of generality, a bivariate normal

case.

6.1 Proof of proposition 2

The structural (underidentified) equation system we have to estimate is the following:

{ Yi = Xy + Yoy + e (6.30)

Y, = Xy + Yivea + e

/
withxp:E{[g“] [5“ ] }
€2 &2

Note that each equation is not identified, as it violates the necessary order condition for
identification (e.g. Greene, 2000, sec. 16.3.1); roughly speaking, in each equation there
are more explanatory variables (X and Yj or Y3) than exogenous variables in the whole

system (X only) . The corresponding reduced form is:

Yi= Xl + e
Yy = X1z + €2

The OLS direct estimator of the reduced form coeflicients

' = (X'X)' XY (6.31)

~

and the variance-covariance estimator based on the OLS residual (E =Y — XII') are

consistent, and we can write:
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Y, = XTI, + &
Y, = X1, + &

{

(6.32)

The OLS estimates of the structural form coefficients of the equation having Y; as depen-

dent variable (6.30) are:

l ;v)/ll
?12

Soa? > TYio
STz 2 Yh

|-l ||

> Ty ]
> Yilil ’

now we can replace y;1, ;2 with the expressions (6.32), obtaining:

-
|

> a? Moy a?+ 3%
M, a2 + Y ey 2 22 +2
ﬁlZw? + > wien

HIHQECE? + 1L Y e + 13 X0

Ti€:2

Iy Y xi€i0 + X €5

Ti€1 + ) €1€5 ]

:

Now posing 3_ x? = ¢* and reminding that " 2,6, = 3 ;62 = 0, because €;; and €, are

OLS residuals, we obtain for the first equation:

i

q
l H2q2 H%qz +> @22
1 l
quéfz

1
DY é;")z

2 ﬁ2q2 ﬁ1q2

]_1 [
g+ 5, g’
—H2q2 q2

|

1 I Y€, — T Y €néin |
Z 5222 E gil giz

ﬁ1ﬁ2(]2

+ 2" €néin ]
ﬁ1q2
I, ,¢% + 5 €65

ﬁl _ Ziz‘gl;& ﬁ2
P

=

22

and analogously for the second equation of the structural form system:

The reduced form coefficients, derived from the structural form, are obtained as

where

_ - ZalAiz -~
l V21 ] _ I — &2, I
~ - E&l&z
Y22 =
2

I=_—B"1T

19

—Ja1

|

ﬁlﬁ%q4 + ﬁlq2 Y€ — ﬁlﬁ%(fl — ﬁ2q2 Y €i1€4n
—H1H2q4 + HleC]4 + q2 > €i1€i2

|

(6.33)

(6.34)

(6.35)

(6.36)



Substituting (6.33) and (6.34) into (6.36) and then into (6.35) we obtain exactly the II as
in (6.31):

I = II.
So that, estimating the structural form coefficients (y11, 712,721, 722) of our underidenti-
fied system (6.30 ) by OLS and trasforming them into reduced form coefficients (by the
proper trasformation) is exactly the same as estimating directly by OLS the reduced form

coeflicients.

We need to show now that the same concept is valid for the estimator of the variance-

covariance matrix.

The structural form OLS residuals are:

5 N - ~ . ~ S D DI TP

Ei1 = Yi1 — Y11®i — Ji2¥ie = Lz + €1 — Az — (Hax; + €52)312 = €1 — 72 o2 €2
i2

N . - ~ . ~ o~ . > En€ig

Ei2 = Yiz — Y& — Yooy = aw; + €2 — Yoz — (I, + €;1)Y22 = €12 — 72 o2 €i1
il

so that the estimator of the variance-covariance matrix of the structural form error terms

S E

is:

~ ~ ~ ~ !
~ €31€:2 ~ ~ €71€:2 ~
1 €1 — 2 1/12& €2 €1 — 2 112_12 €2
=-3 2% 2% (6.37)
n €y — D ciciz e €., — Luli1%2 5,
12 E’gfl 21 22 Zgzgl 21

The corresponding reduced form variance-covariance matrix is obtained, as usual, com-
puting:

$ =B (B (6.38)
Substituting (6.37) and (6.36) into (6.38) we obtain:

~ ~

X=X

So the proof is completed; in fact we have shown that the reduced form parameters
estimator derived from the OLS estimator of the strucural form parameters is equal to

the OLS direct estimator of the reduced form parameters.

6.2 Remark

The methods discussed in this paper and the proof given in the previous section hold also
if no variable has complete data and therefore the matrix X is empty. For example, we
might have two variables only, ¥; and Y3, none of them is completely observed, in some

cases y;; and ;o are both observed, in other cases y;; is observed and y;, is missing, or
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Yi2 is observed and y;; is missing (still assuming MAR missing data mechanism). In such
a case the reduced form would have no coefficients (II), so the reduced form parameters
would be only the covariance matrix ¥. The structural form (6.30) would be without the
X variables, the matrix B would still be as in equation (6.36), thus still producing the
equality (6.38). Notice however that this would be an extreme case. It would be much

more usual to use a non-empty matrix X, containing at least the constant column.

6.3 Proof of proposition 3

In order to prove the proposition 3, we need to introduce the method of simulated scores
(Mss, Hajivassiliou and McFadden, 1990, Hajivassiliou, 1993, Hajivassiliou and Ruud,
1994, Stern, 2000), which is a particular MsSM estimator (McFadden, 1989; Pakes and
Pollard, 1989). For a brief review, see Appendix 2.

The intuition behind the method of simulated scores is the following. We may add, to the
score function, a simulated term, and call the resulting expression a “simulated score”.
If the additive simulated term has zero conditional expectation (given observations, and
considering expectation with respect to the simulation process), then the resulting ex-
pression would be an “unbiased simulator of the score”. Like the score function, also an
unbiased simulator of the score should have a zero expected value at the “true” value of
the parameter 4, and a nonzero expectation for different values of 6 (identifiability). The

estimator is the value of 6 that sets to zero the simulated score in the sample.

In practice, it is not always easy to construct an unbiased estimator of the score (Stern,
2000, p. 25). But there are cases, like ours, where the “exact” score is much more difficult

to produce than an unbiased simulated score.
We show in this section that if, given the parameter values 6§ = (11, X)),

1. we complete our data with the imputation function (4.16), so to have the set of

“simulated” variables Y = b(Y,s);

2. we consider the log-likelihood of the completed data set (simulated log-likelihood) and
its first derivatives (simulated score) that have the usual “simple” expression from the

multivariate normal distribution since data are complete;

3. then, the conditional expectation of the simulated score, given the observed variables,
is equal to the score (eq. 3.14 and 3.15).

In other words, we prove in this section that we have constructed an unbiased simulator

of the score

dlog f(Y]X;6)
06

where ¥ = b(Yops) is the imputation function in (4.16 ).

~ 9log [(Yiu,|X;0)

E
[ 89 Y

| Yops, X (6.39)

We start expliciting, step by step, the left hand side of (6.39); we consider derivatives
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with respect to II and, as in Sec. 3.1, derivatives with respect to X! rather than X.

Expliciting derivatives with respect to I as a block matrix, we have

dlog f(Y[X;11, %)

o1l
— 1/
(Yar — Xally) (Yo — Xally)
(Yp1 — Xlly) Zif (Ygr — Xlly) + \[O22 — a UB2
= y! X

22 (Yo — Xelly) + (/o — 22 Gy (Yoo — Xolly)

099 022
~ 012~ o2, ~
\/OC u U —I‘ g — = Uu
i 11 YD1 /o011 D1 22 011 D2 ]

then, computing expectation conditional on Y,;; and X, we have:

5 [2log F(V[X311,3)
o1l

|}/obs;X‘|

(Yar — X4lly) (Yaz — X4lly)
(Yg1 — Xlly) 212 (Yp — Xpll)

=%} o1 X 6.40
a2 (Yoo — Xelly) (Yoo — Xcelly) (6.40)
0 0
In the same way, we explicit the derivatives with respect to ¥7! as a block matrix, as
follows:
dlog f(V[X;11, %)
ox-1
!
(Yar — XaTly)  (Yap — Xully) (Yar — Xalli)  (Yag — Xally)
_ g | 0= el (Vea— XpIL) | | (Vay = Xplli) (Vi — XpIL)
T2 Yor — Xell)  (Yer — Xolly) Yor — Xellh)  (Yez — Xolly)
Y1 — Xplh)  (Ypz — Xpll,) Y1 — Xplly)  (Ypz2 — Xplly)
_ 22_12 [ ya — Lz, ] [ ya — Lz, ]/
2 2 i€A Yiz — llpa; Yiz — llpz;

r !
Hl.T Hlx
2
o a ~ o a ~
ie || 43 (i — Ihia;) +\[o22 — 22 Ty 22 (g — Wyg) + ([ o9 — 12 iy

r !
2 2
T12 912 7. g12 %12 .
. 1 729 (yi2 — ;) + 4 /o1 — vy Wil s (yi2 — o) + /o011 — ooy Uil
2«
eC Yiz — H2$i Yiz — Hin
r !
1 V011 Ui 01 Ui
o 5 o127 %2 ~ o127 052 ot
ieD | | Jour Uit T[Tz — 7 Ui o Wit T /022 — T Uiz



then, computing conditional expectation, we obtain:

alogf(f/|X;H,Z) ny 1 ,
E l 82_1 |}/Obs7 = 5 5 =~ [ — Ilz; )(yl - HIZ) :|
1/ 1 g12 0 0
) o Zil (yll - H‘T - 7B 01102202
2 ﬁ ﬁ =B 2 0 011 SErTE
1 % 012 011022— 012
—5 | o2 7 (yio — Ilz;) 2_ne 722 _I'by,
2 % 1 = 2 2
Remarking that
v _ "Dy _ WE
2 2 2

we have:

. labg AV I, Y)

82_1 |)/obsaX‘|

2
na npg 011 012 ng 12 012 1 /
= - X il I -5 i — ;) (y; — la;
2 +2 (012 (7122)+2 (UT; 022) 2 [(y z;) (y w)]

011

Lo 1 %2 o
9 ( g12 ot ) Z (yir — lei)z 5 ( 722 922 ) (yi2 — Hzxi)z. (6.41)
1=C

: 012 1
011 o =B o9

This proves the identity (6.39). Infact, the explicit form of the right hand side of (6.39)
are the expressions (3.14) and (3.15) and the left hand side of (6.39) are the (6.40) and
(6.41); we reach the result observing that ( 3.14) is equal to (6.40) and (3.15) is equal to
(6.41). Therefore it is natural to consider the equality (6.39) as an unbiasedness condition
and to propose
dlog f(Y|X;6)
06

as unbiased simulator of the score.

6.4 Numerical convergence of the estimation/imputation pro-
cedure

The simulated scores estimator of § = (11, X)) is obtained solving

dlog f(V]X;11,%)
o1l

Y, X =0 (6.42)

and -
dlog f(Y|X;11,Y)
ox-1

YV, X =0 (6.43)
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Expliciting (6.42) we obtain

Yar — Xally
Y1 — XBlL

i o2, - X =0, (6.44)
o9y €C2 + /o — gy UC1
\/UuﬁDl

and

[ Vg — X4ll,

% €p1 + 1/ 022 — %ﬂBz
X =0. (6.45)

Yoo — Xelle

2
u J92 — — U
| o b1 T \[022 — Thup? |

Expliciting (6.43) we obtain

Y — Xally Yy — Xylly Yiar — Xally Yy — Xyully
Vg1 — Xplly Yy — Xpll, Vg1 — Xglly Yz — Xpll,
Yor = Xolly Yoo — Xl Yor — Xolly Yo, — Xolly
Yp1 — Xplly  Ypy; — Xplly Yp1 — Xplly  Yp, — Xplly

nY— =0 (6.46)

In order to obtain the simulated scores estimator for ¥ we have to solve (6.46) or equiv-
alently the following sistem:

o012\ 2 ol -
n oy = Z (yin — Hl«Ti)z + (12) Z (yiz — H2$i)2 + (011 — 12) Z %21
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2
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o
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€A o1 ieB
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Concluding, the equations that we solved to obtain the simulated scores estimator (6.44,
6.45 and 6.46) are the same conditions we have at convergence achieved of the iterated
estimation/ imputation procedure (5.21-5.25). With a complete data set, the OLS normal
equations are exactly the same as: score=0 (this holds both for coefficients and covariance
matrix of the reduced form). But since data have been completed by imputation (simu-
lation), it is, in fact, a simulated score=0. Thus, the OLS estimator of the reduced form
system with completed data (at convergence achieved) is a simulated scores estimator.
As such, it is strongly consistent and asymptotically normal (e.g. Gourieroux, Monfort,
1996, pp. 35-37). About the efficiency of this estimator it is worth spending some more

words.

6.5 Asymptotic (in)efficiency

The potential advantage of the method of simulated scores is to use an estimator with the
efficiency properties of the ML and the consistency properties of the method of simulated
moments MSM. The MsM estimator is asymptotically efficient if the proper weights are
used (those that turn the moment condition into the score statistic) and the simulated

scores estimator ensures that such weights are used (Gourieroux, Monfort, 1996, p. 35).

In order to define and make explicit the asymptotic variance-covariance matrix, it is

necessary to introduce some convenient notations: the expression of 7! in terms of its

2_1 _ l 0.11 0.12 ]

elements is

0.12 0.22

The vectorization of such a matrix is

vech (E_l) = [011,012,022]/

has been used in practice. The information matrix derived from the likelihood (3.11),
also called information matrix of the observable model, will be indicated as I; the infor-
mation matrix derived from the multivariate normal with complete variables, also called

information matrix of the latent model, will be indicated as I*. They are, respectively

_9*log f(YObs|Xobs;9)] _ [ [frm]  [0] ]
2008’ 0]  [Iss]

[_ 82 log f (Yobs| X opsil1,X) ] [_ 9 1og f (Yobs IXobs;l'LE)]
]

1-5|

a(vechH)a(vechH)/ B(UechH)B(UeChE_l)'
_ 82 IOg f(Yobs|Xobs§Hvz) _ 82 log f(Yobs|Xobs§H72)
(vechL—1)d(vechIl)’ 9(vechX—1)9(vechX—1)!

=E (6.47)
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]*:E[_Wlogf(f/lX;@)]:l[ll*m] 0] ]

0600’ [0] [I35]

[_ 6% log J(¥|X o5 TLE)
d(vechIl)d(vechE—1)
82 1og f (V| X opesI1,3) (6.48)

- d(vechE—1)9(vechE —1)’

_ 821og f(Y| X ppssT1,E)
8(’U€C}LH)8(’U€C}LH),

_ 92log (Y | XopsiIL,E)

d(vechX—1)d(vechIl)

gl

Each expression inside small square brackets, in (6.47) and (6.48), represents a block
of the matrix inside big brackets. The upper-left block has dimensions (2 x 2), the
lower-right block has dimensions (3 x 3), and the two off-diagonal blocks have dimen-
sions (2 x 3) —the upper-right- and (3 x 2) —the lower-left. The steps performed in order
to explicit the expressions (6.47) and (6.48) are in Appendix 3; here we report only the

main results.

The off diagonal blocks, for both (6.47) and (6.48), are identically zero (we omit the proof

because of its simplicity).

For the observable model we have:

2 o012 2
I —E _82 log f(ifobs|Xobs; H, Z) _ 2_1 iE%:,B T, 022 zé T;
t d(vechll)O(vechlIl) D DI LD DR
1 eB i€A,C
I — F 82 10g f()/obs|Xobs; H7 Z) _ 511 521 §31
R d(vech¥—1)0(vech¥ 1) N 2 T e
I3y I3y I3
where .
n4+ ng ng\ o
b= () ()4
M 2 u 2 ) o2,
05)2
Iy = (na +np)onoi +ne—
022

Iy =ny (Ufz + 011022) + 2(ng + nO)Ufg

nag+ng+nec ,
J12
2

3
T12

011

nA+nC) 9 (nB) ol
] = _ — —
23 ( 2 22t 2 ) ok

For the latent model we have:

]31 =

I3y = (na +ne)o12090 + np

Z.T?, 0
0 E:vf

* 82 10g f(Y/|Xobs;H72) _ yv—1
n = F [_ d(vechll)O(vechll) =
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2 2
o - 011012 T2
* 82 log f(Y|Xobs;H72) 2 2 2
Ep=F _a(vechﬂ_l)a(vechz_l)/ N oo Tt ouon Juon
ol P a5
3 12022 5

The asymptotic variance-covariance matrix for a simulated scores estimator, which is

discussed in Appendix 2, is
Ve [V (0= 0)] =17+ 17 (I = 1) 17! (6.49)

It is clear from (6.49) that there is a loss of efficiency with respect to maximum likelihood,
whose asymptotic variance-covariance matrix would be I=!. Roughly speaking, we can
say that there is price that must be paid for the simulation, and it is I=* (I* — I) I~*. We
notice that it is proportional to the difference between the information of the latent and
observable model (so, if the latent and the observable model were the same -no missing
data- the difference would be zero and obviously there would be no loss of efficiency, but
there would be no simulation). The difference (I* — I) is

0" U]~

and, subtracting the corresponding blocks, we have (formulas are derived in Appendix 3):

2 __ o012 2
) > Ty, 0o Z Z;
]* - ] _ 2—1 ZEC,D 1eC
TII1 mam = o012 2 2
o1 E Ty E €L
i€B i€B,D
- 2 2 4
mallgzg_"lz . o
2 059 ) ? ?
* _ 011022—07, 2
]EE Iyy = nc——,,, 012, (nB + nc) (011022 - 012),
2 2 4
0 n (J Cooy — 02 )& nB 9119227 %12
L B\Y11Y22 12/ 5417 2 o2,
[ np 2 _ _
2 0115 ’
2
+ npo110i2, np(oiy + 011022), —
np -2 np -2
2 0125 nNpo12022, 2 T2

which are both positive semidefinite matrices, so the difference (I* — I) is positive semidef-
inite (proof in Appendix 3): the larger this difference, the larger the loss of efficiency with
respect to maximum likelihood. Although appearing in a complicated form, this differ-
ence is larger when larger is the contribution of the sections with missing data B, C and

D, while section A (complete data) does not contribute at all.

6.6 Improving asymptotic efficiency

What has been discussed till now is one replication, till convergence, of the iterative

estimation/imputation procedure. We may replicate the procedure S times independently,
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each time till convergence. Then we average the S estimates of 67, obtaining the estimate

fs. Its asymptotic variance-covariance matrix would be (see Appendix 2 and Gourieroux,

Monfort, 1996, p. 36)
n -1 1 -1 /7% -1
Vio [V (05— 0)] = 17" + S -n1 (6.50)

which is smaller than the variance-covariance matrix given in (6.49), corresponding to one
replication only. As it usually happens when an estimator is computed by simulation, its
efficiency increases when the number of replications increases. Thus, the way to improve
the efficiency of the estimator is, also in our case, to increase S. It is clear that if S — oo,
the asymptotic variance-covariance matrix is /=!; in other words, the simulated scores

estimator would reach the efficiency of the ML estimator.

Only after having computed fs we obtain the “optimum” imputed data performing the
imputation by the usual function defined in Section 4. In this way the procedure to get the
“optimum” imputed data proceeds through two steps: the first step is repeated S times
in order to compute fs (the imputations in this step are only instruments to produce
the parameter estimates), the second step needs only to perform imputation with the

optimum fs.

7 Multiple imputation

This section does not aim at explaining the multiple imputation (MI) technique with its
characteristics and properties, the real aim is to explain how to create multiple imputations
by using the “least-squares estimation/multivariate normal imputation”. Using such a
procedure, we estimate the unknown parameters of the encompassing multivariate model
for the entire dataset and we consider as definitive completed data those obtained when the
convergence of the estimation procedure is achieved. Repeating m times the procedure,

we can build a chain of estimates (51, 52, vy ém) and the corresponding chain of simulated

values (371,572, ,f/m) In this way, each of the m completed data set is analyzed by

standard complete data methods.

The overall procedure for computing multiple imputation proceeds in two steps. First,
m simulated versions of the missing data are created under a data model. Second, the m
complete datasets are analyzed by complete data statistical techniques, and the results
are combined to produce one overall inference. Sometimes the analysis of the second stage
involves different models than the one used to produce imputions at the first step; this
is not a serious problem, especially if the amount of missing information is not too large.
Infact, multiple imputation is robust to departures from the complete-data model. Hence,
even if the model examined in this paper may not realistically describe many datasets
relatively to real applications, still it is a useful framework for imputing missing data for

continuous variables.
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8 Conclusion

In this paper we have introduced a method for creating multiple imputations assuming
data generated by a multivariate normal linear regression model, assuming an arbitray
pattern for the missing values and an ignorable missing data mechanism. The method is
essentially based on an iterative “least-squares estimation/multivariate normal imputa-
tion” procedure. The method seems to be friendly for the data analyst, as it computes the
parameters by estimating independently each equation of a system by OLS, and it per-
forms the imputation by introducing pseudo-random errors and solving simultaneously
the same system. Besides its technical simplicity and feasibility, the peculiarity of the
method is in the properties of the estimator. First of all the parameters estimator is
consistent and asymptotically normal. Moreover, beeing a simulated scores estimator, its
efficiency can be improved by increasing the number of replications. Finally, the estima-
tor becomes as efficient as maximum likelihood if the iterative procedure is replicated a

sufficiently large number of times, each time iterating to convergence.

Obviously, the optimum solution when dealing with missing data should be performing
multiple imputation building each imputed data set with the optimum estimator fs. This
might require a large computational effort. But also using the estimator produced by one
replication only to perform imputation of each final dataset is inferentially superior to
the other method easily implementable (complete case, single imputation, etc.). This is

surely an advantage of the method discussed in this paper.

We dealt with the missing data problem in the context of a linear normal model in which
some observations of some variables (treated as “endogenous” variables) were missing,
while other variables (treated as “exogenous” variables) were completely observed. The
approach presented could be used in a similar way if some exogenous variables are miss-
ing and we can explain them by auxiliary linear relationship involving other exogenous

variables.

Of course, in many real cases missing data do not affect only continuous variables. The
problem exists also for categorical data, count data, or censored variables: generalization

of the method here proposed is left to future research.

Appendix 1: Feasible imputation for bivariate nor-

mal data: reduced form approach

Tteration O.

The two reduced form equations (3.8, or 6.32), considered as two normal linear regression
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models on the observed part of the data matrix (A), are estimated using OLS

yian = Lz + e

€A
yiz = 1oz + €9

Y

obtaining the initial estimates of the reduced form coefficients:
10 - [0, ] = (X)X~ X174
and (without degrees of freedom correction)

~

$00) —

3(0) 8(0) 1 iy ~
11 12 | _ b (EQO)EE;O))
GS) 853) na

as the residual variances, where Ego) =Y, — XAﬁ’(O).

Missing values in section B and C are imputed as values generated from the conditional
distribution of the variable with missing data given the corresponding observed variables,
while missing values of the D section are generated from the bivariate distribution. Ac-

cording to the explained procedure, the first values of the completed data are the following:

yin = iz, + Jo11 un

- o2 ,i €A
Yio = 1oz, + o (yin — ;) + (/o2 — o2 Ui

yn = Iz, + 1 Uit

- ~ N 502 ,tEB
yz(g) - H(O)x —I_ A(O) (yzl HgO)CEz) + Jég) A(o) u22

Yio = Loz + /022 Uiz

~| o (0) 11 o ~
i) = 10w+ 2 (v = 120) + \[017 = By T
22

~

?72('?) = H( )'TZ + 011 Un

~(0) 0_ /\(0)2
Yo' = A%g) 011 Ui + 022 A(o) Ujo

The dataset is now completed and it can be represented as in the following matrix

Yar  Yao

(0

o _ | Yo V)
Y Yoo

Y5 Y



Also the matrix of residuals can now be completed (so far, residuals were available only

in block A) as EO© =y _ X[
Tteration 1

The two normal linear regressions on the data (A+B+C+D) completed in iteration 0
are estimated obtaining oo = [ﬁgl),ﬁ(;)] and (). Since the completed 571(0) can be

represented as 571(0) = Xﬁ,l(o) + éﬁo), OLS estimation gives

— -
e
~(0

N o &1

0 = (X307 KT = B0+ (XXX | 20 0, Lo e
~0) €02 T4/01 — ~0) Uci

(0) ~(0) ~(0)

where the vector e}’ has been explicitly divided into its four components: €,; and ég;
are the residuals of iteration 0 related to the fully observable y;; of sections A and B; in
sections C and D the y;; are not observable, so they have been replaced by the values
imputed in iteration 0 (notice that, when ¢ € C, @Z(»S) = Y2 — ﬁgo)xi, being 1y, fully

observable).

Analogously, when estimating I, we have

- /\(0) -
€a2
~(0) (0)2
o ~(0) ~(0) ~
=1(1) =1(0) 1 ﬁ €B1 + 22 ’0\1(20) UB2
i - ! 11 11
H2 = H2 ‘I‘ (X X) X A(O)
€c2
+(0) ~(0)2
o ~ ~(0 o ~
=~ 011) up1 + U£2) - ;1(20) Up2
L 1 11 .

S _ [ 5%; 3%; ] _1 7O — x[m] [FO — x|
01y O
Missing values in section B and C are imputed again as values generated from the con-
ditional distribution of the variable with missing data given the corresponding observed
variables, while missing values of the D section are generated from the bivariate dis-
tribution. According to the explained procedure values of the completed data are the
following:
ya = ha; + /o ua

- o2 ,i e A
Yo = oz, + ﬁ(yn - H1$i> + 1/ 09222 Uy

011 011

ya = iz, + /o1 ua

. ~(1) ~ ~(1)2 1€ B
~(1 1 4 1 ~(1 o ~ )
312(2) = H(2 )xi + 3312) (yin — Hg )$i> + Uéz) - 7;1(21) Uz
11 11
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Yio = Loz + /022 Uiz

(1 ~(1 sy =~ (1 ) w2 el
gy = 00 + 2 (i — DVs) + 31 — Tay @’
922 T22
i = H( ):cz + JQ o
~(1) /\(1)2 7Z E D
Yia' = A(1) 11 un + (722 A(1) Ujo

The dataset has been updated, it can be represented as in the following matrix

Yar Yo
vy — ¥Bl 57}5(312)
v Yo
vy v

Tteration k

The two normal linear regressions on the data (A+B+C+D) completed at the (k-1)
(k)

iteration are estimated obtaining 1I'®) = [Hgk), Hgk)] and X7, as follows:
- (k) -
€41
(k-1
Sk (k-1 1 6%1 )
0 = %Y+ (XXX | 560 gy | ey a2
~k-1) €C2 +4/011 - /\(k 1) Ucy
T22
[~(k=1) ~
| ‘7§1 : Upi ]
— /\(k—l) -
€42
~(k—1) ~(k—1)2
912 A(k_l) ~(k—1) %12 ~
Al(k) /\/(k_l) , _1 , /U\gllc_l) €B1 + \/0-22 - ggllc—l) Up2
I, =11, +(X'X) X o
€02
~(k—1) ~k—1)2
o ~(k=1) ~ ~ (k-1 o ~
~= U§1 ) ipy + (752 - =y UD2
g g
L 11 11 .

N A(k) 3(@ 1 1~ ,
Nk _f[y(k—l) XH'(k)] [y(k—l) XH'(k)]
R
12 22
~ !
Y — X4 v, — x,08 7 v
_ L Ve = XTI Ve, — XTI || Vi
n | Yoo — Xell¥ Yoo — XcI | | Yoo
Yp1 — Xpll® Vo, — xp0 ) Yo

32

Yo — X 4118
Yo, — XplI?
Yos — Xl
Yo — XDﬁ(Qk)



In particular, we display the explicit expression of the element (1,1) (the others would be

analogous):
k (kY ~(k) | ~(k)~(k k—
na—gl) = 6541)/‘9&11) + 6551/6581) + (Hg Y ) ZI
1€C
~(k=1)\ 2 5(E=1) 2
o A(k=1) ~(k— ~ (k- 12 ~r o~
+ ( }13 1)) 6(021)/6(021)_|_ ng 1)_(A(k—1)) ulCl ey
022 T2
_(k-1) _(k-1) s=1D)?
(k-1 (k) O k-1 o ~ (k-1 12 k=1) ~
+ 2(Hg )_Hg))ii—l)zxi é\ )‘|'2 12 1) U§1 )_( N 1)) ec(‘2 )UC1
022 ~ ieC 022 22
~(k-1)
~ N 5
+ 2(0fY —aP) a5 - (o) ) S i
(722 ieC
+ (ﬁgk Do ) Z xy + 011C R Upy, Upr + 2 (ﬁgk_l) - ﬁgk)) V aﬁ_l) Z T; Ui
t€D €D

Missing values are imputed as in the previous iterations, so the completed data are now

ya = iz, + /o1 un

- o2, ,Z:EA
Yiz = H2$i + rﬁ(yil - Hlfl: ) + 099 — —12 Uiz

yin = iz, + /o1 ui

~(k ~(k ok ~ () G 1€ B
yz(2) = H(z )«Tz' + %(yn - H§ )CEi) + U£2) A(k) Uiz
11

Yio = Loz + /022 Uiz
. ~(k .

~(k k o k ~(k o ~
yz(l) = Hg )wi + A%i)(yzz Hg )51?2') + U£1) — ;1(71) U1

o)) _ ﬁ(k)

Yi J11 Ui

~(k) . a'(k) ’\(k)z
Yo' = Abi) V 011 Uy + 022 /\(k) U;o

so the whole dataset is now

Yar Yao

~ (k

g | Yo VEY
Vi Yo

k o (k
v Y

The parameters estimated at the current iteration and at the previous iteration are com-
pared. If they are equal, or very close to each other, the estimation/imputation procedure

has come to its end, otherwise the procedure continues.
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Appendix 2: The method of simulated scores

Let us consider a complete data model, where y; is the set of the endogenous variables,
z; is the set of the exogenous variables and f(y;|x;,0) denotes the conditional p.d.f. of y;

given x;.

The application of the GMM (Generalized Method of Moments, Hansen, 1982) requires a
closed form for the specification of the moments. Sometimes such a closed form does not
exist and it can be replaced by an approximation, based on observations and simulations,
called simulator . The derivation of the GMM estimator is based on empirical moments,
computed only on observations: parameters estimates are obtained matching the empir-
ical moments with the theoretical moments (or minimizing their differences). The Msm
estimator (Method of Simulated Moments, McFadden, 1989; Pakes and Pollard, 1989) is
derived in the same way, but using the simulator, thus using a different empirical moment

that includes not only observations, but also simulated values.

Hajivassiliou and McFadden (1990), Hajivassiliou (1993), Hajivassiliou and Ruud (1994),
Stern (2000) consider a particular case. Maximum Likelihood can be viewed as a GMM
estimator, where the theoretical moments restriction is that, at the true parameter value,

the expected value of the score must be zero

g [alogf(yﬂxi;@ ‘ %] _0

06

If the p.d.f (and thus also the score) has an intractable form, and g (y;, z;, @%;; 6) is an

unbiased simulator of the score (Gouriéroux and Monfort, 1996, example 2.3), that is if

~ dlog f(yi|z:; 0
Bly (20,50 o] = 028 1750)

then the method of simulated scores estimator of 6 (Mss) is the MsSM estimator based on
the particular simulated moment ¢ (the simulated random term #; has a known and fixed

distribution conditional on y;, z;; expectation is with respect to the simulation process).

A natural way to construct an unbiased simulator of the score arises for latent variable
models. Hajivassiliou and Ruud (1994, sec. 2.6 and 4.4) show that every score function
can be expressed as the expectation of the score of a latent data generating process taken
conditional on the observed data. In other words, we may consider a latent model with
variables (yf,z;),2 = 1,...,n, and denote by f*(y}|z;;0) the conditional p.d.f. of ¥} given
z; (Gouriéroux and Monfort, 1996, example 2.4). If the endogenous observable variables
are a known function of the latent variables y: y; = a(y’), then it can be proved that the

score function is such that:

5 [mogf (E0

ol dlog f(y;|z:;0)
st 00
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So it would be natural to consider the previous equality as an unbiasedness condition
and to propose the unbiased simulator dlog f*(y;*|z;;0)/00 where y* is produced by

simulation, drawing from the conditional distribution of y* given y; and ;.

However, “natural” does not necessarily imply “easy”. (Stern, 2000, p.25) observes that,
in practice, it is not always easy to construct an unbiased estimator of the score. Still in
example 2.4, Gouriéroux and Monfort (1996) observe that such an unbiased simulator is
used, in practice, only when if the above random drawing from the conditional distribution
is simple. And this is in fact the case we treat in this paper, where the search for an

appropriate and manageable latent model is rather straightforward.

The simulated scores estimator 5 based on § replications and sample size n, being a
MsM estimator, when n goes to infinity and S is fixed, is consistent and asymptotically
normal (Gouriéroux and Monfort, 1996); about the efficiency the same authors (p. 36)

show that the asymptotic variance covariance matrix is
) -1 Loy s -1
Vao [V (Bs —0)] = 17" + =01 (A2.51)

where [ and [* are respectively the information matrix of the observable model,

B 0?log f(y:|z:;0)
0006’

1- 5|

and the information matrix of the latent model:

B 0*log f*(y7|zs; 0)
0600’ '

I*:El

The price that must be paid for the simulation is I=* (I* — I) I7'/S; as it is usual for
simulation-based estimators, it decreases with S; moreover, it is proportional to the dif-

ference between the information of the latent and observable model.

Appendix 3: The information matrices

In this Appendix we report all the steps performed to explicit the information matrix of
the observable and of the latent model. We rewrite here the expressions for [ (6.47) and
I* (6.48), respectively

]:El_aﬂogf(mxobs;e)]:lunn] 0] ]

9606’ 0]  [Iss]

[_ 82 log f (Yobs| X opsill,X) ] [_ 9 1og f (Yobs IXobs;l'LE)]
]

d(vechIl)d(vechll)’ B(UechH)B(UeChE_l)'
_ 82 IOg f(Yobs|Xobs§Hvz) _ 82 log f(Yobs|Xobs§H72)
(vechL—1)d(vechIl)’ 9(vechX—1)9(vechX—1)!

=F (A3.52)
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e[ ] <[l

_ 92log F(Y|XopssIL,E) _ 92log (Y| XopsilL,E)
— B a(UBChHZQ(UBChH), a(vechn)af(vvechz_l)' (1%353)
3% log f(Y| X ops;I,2) 32 log f(Y | X ops3I1,E)
- d(vechX—1)d(vechIl)! - d(vechX—1)d(vechx —1)’

Expliciting the block (1, 1) of the matrix on the right hand side of the ( A3.52), we have

2 o oy g2
82 10g f()/obs|XObs;H7Z) _ _2_1 iegl:,B z;, 022 %:c T;
d(vechlIl)d(vechll)’ D D S DI+
11 /eB i€A,C

which remains unchanged when applying the expected value

$2, 912 $2
Imm=F _ 9 log [(Yobs| Xops; 11, 2) —y-! ie%:,B ‘ 722 z%:C ‘
0 (vechIlvechll’) o2 3 22, Y a?
' ieB i€A,C

We indicate the block (2,2) of the matrix on the right hand side of the ( A3.52) as the
following (3 x 3) matrix

82 IOg f(Yobs|Xobs§H72) 82 log f(Yobs |Xobs§H72) 82 log f(Yobs|Xobs§H72)

dollgell dollggl2 dol115g22
[A ] — 82 10g f(Yobs|Xobs§H72) 82 log f(Yobs |Xobs§nvz) 82 log .f(Yobs|Xobs§H7E)
Im] — 90125511 90125512 90125522
82 log f(Yobs|Xobs§H72) 82 log f(Yobs |Xobs§nvz) 82 log .f(Yobs|Xobs§H72)
80.2280.11 80.2280.12 80.2280.22
Lm=1,2,3 (A3.54)

In order to compute (A3.54), we differentiate log f(Yops| Xops; 11, ¥) with respect to the
elements of vech(X™!) obtaining a (3 x 1) vector whose elements are labelled with A,
(I =1,2,3). Reminding that o15/01; = —c'?/0**, 015/02 = —c'?/0'!, we can write the

A; elements as follows

n 1 1
A = 7A<711 ) Z(yn - lei)Q + 9 [TLBUH - Z(yil - H1$i>2]
1€EA 1€B

1 /o2 2 )
-|-§ (011) [710022 - Z(yiz - Hzﬁfi) ]

e’

12
Ay = ngop — Z(yn - Hlxi)(yﬂ - Hﬂi) - ﬁ [nBUn - Z(yil - Hlmi)Z]
t€EA 1€B
o2
_ﬁ [ncffm - Z(yiz - Hﬂi)z]
1€C
n 1 1 (o2 2
A = ?A022 5 Z(yn - Hlfﬂi)z + 9 (022) [nBUu - Z(yil - Hlxi)Z]
€A 1€EB

1
-|-§ [710022 — Z(yiz — Hz%‘f] .

1€C
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With further differentiation, we obtain the second derivatives, which are the elements of
the (3 x 3) matrix (A3.54) (being symmetric, we explicit only the lower triangle):

naA 9 1 2 (‘712)2 2 1 (o12\* 2
An = Ty 1T 5B T W ncoa — Z_EZO(%? — )" + 92\ g1t (_ncaw)
o2 12 ol?
A21 = —NA011012 — ﬁ (—nBa-%l) —I_ W |f'LCJQQ - ZEZC(yZQ - H2$i)2] - F (_nCUfQ)
1 o2
Ay = —ny (Ufz + 011022) Y [TLBUH = (yin — Hlmi)Q] T 22 (—2nponi012)
i€B
1 , o2
— 1 |PcO22 — Z(yiz - Hzlﬂi) BEDRT (—2110012022)
g ieC o
N4 1 [o'2\* 1
An =ty (a) (Zenoty) = gnect
nA ol? 2
Azy = -y (2012092) + 2? npoir — Z(Z’Jil — 1l 2;)
(U ) i€B
1 /o2 2 1
-}—5 (022) (—2npo11012) — 3 (—2nco12092)

A o (012)2 2 INEEAY 2 1 2
Aszs = —?022 — (022)3 npo1 — ;(yn — yx)*| + 9\ g2 (—n5012) — 5”0022
In order to explicit the lower block of the information matrix 7, according to the (A3.52),

we have to apply the expected value to each of the (A3.54), or equivalently to each A,

previously defined, so we have:
4

nis+n n o
o= plad= (P34 (1) %
22

3
o
Iy = E[—Ag] = (na+np)onon+ ng—=

022
Iyy = E[—Ap] =na (Ufg + 011022) + Q(TLB + nC>sz

ng+ng+ne ,

I3 = E[—Ag] 5 T12
Ufz
Iy = B[~ As] = (na + n¢) 01202, + nBJi
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nas+n n ol
e = (32 (2)
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37



So we can indicate

[ Pl (VX)) |
=2 d(vech¥—1)d(vech¥ 1) - e e
I3y I3y I3

Now, all the elements of the I matrix are computed, and we have to follow the same

procedure to compute the elements of I*.

Let us consider the (A3.53). Expliciting the element (1, 1) of the right hand side matrix,

we obtain:

- 2
9? log F(Y [ Xops; 11, X) _ ZZ:ZIZ“ 0 .
d (vecllvecll’) B 0 Sai |’
applying the expected value we obtain:
H? 1ng(f/|Xobs;H,E) 22255227 0

[n=E ]:2—1 .

d(vechll)O(vechll)

0 fo

We explicit now the elements of the block (2,2) of the matrix (A3.53 ). Labelling with
Aj the first derivative and reminding (3.10) we easily obtain

n 1

Al = Q01T Z(yn — Iy2;)? (A3.55)

A; = nNoy19 — Z(yﬂ - Hlmz)(yﬁ - H2CE2) (1/‘\356)
L N 1 )

Az = 5027 Z(yiz — Hyz;) (A3.57)

Now, differentiating (A3.55-A3.57) with respect to [vech (X71)]" we obtain:

2
11

2 011012 2
* 2
Im = —N | 011012 0Oiy + 011022 012022
0%2 C’gz
D) 012022 2
2 2
911 912
D) 011012 2

_ 82 1Og f(i;|Xobs; H7 Z)

Iy, = F =FE[A] ] =n| on01y 0}y+ 011002 012022
= d(vech¥—1)0(vechL—1) (A 2 12 2

912 922

D) 012022 2

Let us now observe [* and I more in detail, and particularly the difference (I* — I) (equa-
tions 6.47 and 6.48). This difference should be a positive semidefinite matrix; furthermore
such a difference should become quite small when the latent and the observable model are

similar. In order to show this result we write the explicit form of the difference (1* — I):

e[ - ]
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The difference between these two matrices can be represented subtracting the correspond-

ing blocks, so that:

i 2 2 g12 2
Ewia 0 Z Lis 022 Z Ti
* _ -1 i -1 | €A,B 1€C
]HH - IHH = X 0 2 — X 012 2 2
2, E}Z}g-’”m '%:CIZ'
L ) 1€ tEA,
2 12 2
E Ty, T E T;
. 2—1 1€C,D 1eC
o 12 2 2
T o1 E Lis ) E T
L 1€B 1€B,D
0'2 0'2
% 011012 % Ly Iy Iy
* _ 2
]zz — Isxy =n| o012 Oi9 F 0110922 012092 | — Iy Iy I3
0_2 0_2
%" 012099 % I3y Iy Is3
[ [nicgflg%_‘ﬁg + @0-2 ] _ _ T
2 o3y , 2 11> ’
011022—0 2
T, 012 (nB + nc) (011022 — 075) _
. ) 2 )
= +npoi1012) +np(oi, + 011092)
2 2 4
— g2 )12 np %11%227%2
np ;2 np(011092 012)0—11 2 ol
9 Y12 ’ n 2
+npo12032 +7 704,
i MU?10§2_0%2 _ _
2 o 7 7
22
_ 011022—07, 2
= no—, 012, (ng + n¢g) (011022 — 075),
0 n (J Toy — 02 )m Mg%1532_g%2
L B\V11022 12/ 5440 2 C’?l
[ np 2 _ _
2 9115 ’
2 _
+ npo11012, np(oiy + 011022), — =T+R
np .2 np 2
2 0129 np0i12023, 5 29

To prove that the difference (I* — I) is positive semidefinite, we remember that if a

symmetric matrix A can be written as
A=QQ (A3.58)

then the matrix is positive semidefinite. So, it is sufficient to show that both matrices
Iy — Inn and 5, — Isy can be written in a form like (A3.58). Let us consider the matrix

Ifin — Inm, it can be rearranged as follows

2 12 2
_Z Ty, T oo 'Z T;
I ]HH _ 2—1 1€C,D 1eC
nn - g12 2 2
ot _E Ty > T;
1€B 1€B,D
2
2 4 2 2
1 T2 ). wi+rﬁ2$“ —012 ), €T;
. i€C,D i€B i€B,C,D
- Y e 2
2 4 2 2
det(¥) | —oyy T 2 ) xiton )
1€B,C,D 1eC 1€B,D
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/

1 aﬁXBv Vo Xy aﬁXBv Vo2 Xo
det(X) | —onxp, \J22x, —mxg, 23
1 [ 022 —012 ] 2 1

2 = e (A3.59

det(X) | —o12 o %;7 de t( )QHHQHH ZEZ% )

concluding that Iy

semidefinite matrices.
Let us consider the matrix I3y, — Isy

T+R

*
]EE - ]EE
m"%”gz—gi“z

2
2 05

I

022

2
011022 — 01y

0

)012

nB( 011’

np .2

2 0117
2

npo11012, Np(0ie + 011022),

2
= 0125

?

_|_

np 2

npoi12022, 5 022

We show that it can be rewritten specifying both T'

. . . . . _ 2
consider 7'; indicating ¢ = o7, + 011022, we have

2
011022—0
ng——_—12073, (nB +ne) (011022 —

and R as in (A3.58).

— I is a positive semidefinite matrix being sum of two positive

t2)
012)5
2 2 4
np 9119227 %2

2
711

(A3.60)

Let us first

1 e
L[t o, 0
12V 2n
T — TC, /nB+nC_2ncal2, 0
g1z i np _t _ %13 4 2
L 0’ 099 np t(np4nc)—2nco12 \/2 U%l 0% t(np4nc)—2nco12 np i
!
1 /ne 1
oas\/ 3 t, 0, 0
0’12\/2’@
Vi < . /nB-I—nC_My 0
2
g12 i ng t _ %12 i 2
L 07 T22 B nB-I-nC) 27L5012 \/ 2 U%l dfl t(’l'LB+’rLc)—2nc(712 nB h

Being T written as (A3.58) we can conclude that 7' is a positive semidefinite matrix.

Let us consider R; indicating r = 0%, — 01,02, we have

0’11 o1
o, 0 =0, 0
R = \[012, Vr, 0 \[0127 VT, 0
012 T12 T ‘712 o12 r
V2011 Ull\/; o11V2 V2011 ‘711\/; o11V2

The R matrix has been arranged as (A3.58), so we can conclude that also R is a positive

semidefinite matrix.

Being I3y —
proved the same for the matrix Ifj; — Inn, we can conclud

semidefinite matrix.
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Iy, = T'+ R we can conclude that it is a positive semidefinite matrix; having

e that (I*

—I) is a positive
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