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Abstract: When the model is identified but the information matrix is singular, the classic
asymptotic properties of the maximum likelihood estimator are not clear and an inferential
procedure based on it is not viable. In the paper a solution of a loglikelihood equation
appropriately penalized is shown to be consistent and asymptotically normal distributed
with variance-covariance matrix approximated by the Moore-Penrose pseudoinverse of
the information matrix. These properties allow one to get a quadratic function based
on a standard Chi-square distribution for hypothesis testing. A simulation applied to a
simplified Engle’s model is presented to support the theoretical results.
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1 Introduction

Letf(t:0)0' =/ ] €O CR*, a €O, CR",3€ 0O, , CR",tecRbe adensity
function continuous o® defining the distribution corresponding to the paraméter

a neighbourhood of a true unknown parameter valje= [ag 5;]. In this paper we
tackle the problem of the asymptotic properties of maximum likelihood estimator when
the information matrix is singular and the model is identified. We propose an estimator
which allows one to do inference on the whole set of parametgis, on the parameter

of interestny, say.

Statistical literature on the singularity of the information matrix is large (see Rotnitzky
et al. (2000) and the associated bibliografy). Models more relating to this paper concern
hypothesis tests involving parameters not identifiable under the null hypothesis. Consider,
for example, the following simplification of Engle’s (1984) model

y/x ~ N(az® o* = 1), x>0, Hy:a=0 (1)

wherex is non-stochastic. In the model the parametés estimable only when the null
hypothesis is false. Undéi, the hessian matrix is non-singular while the (expected)
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information matrix in an observatiofi (), given by

Bla=0,5) = ﬁ,ﬁ 8}

Is nonnegative definite. In this model an inference on the parameter of interest is possible
only if we were able to handl@ somehow. In small samples the loglikelihood function of
botha andg can be maximized under the null and the alternative hypothesis, but because
of the singularity of the information matrix the asymptotic properties of the joint estimator
IS not clear.

Models of this type abound in nonlinear regression where seagr&locsolutions
have been suggested. For example, Cheng and Traylor (1995) proposed an "intermedi-
ate model” between the model where parameters are missing and where they are present.
The solution proposed is based on suitable reparameterizations and the success depends
on how well the reparameterization positions the "intermediate model” between the two
extremes. This procedure seems to be very difficult to apply when the number of vanish-
ing parameters is relatively high. Davies (1977, 1987) proposed an interesting approach
to the problem of hypothesis testing when a nuisance parameter is present only under
alternative. Given a suitable test statistic he suggested treating it as a function of the
underidentified nuisance parameter, basing the test upon the maximum of this function.
The asymptotic distribution of this maximum is not standard but Davies provided an up-
per bound for the significance level of his procedure. It has been observed (Cheng and
Traylor, 1995) that, though elegant, "Davies’ method is quite elaborate to implement in
practice and difficult to generalize”.

In general, most of the solutions proposed in the statistical literature are based on
suitable reparameterizations of the particular model analyzed so that to remove the causes
of singularity and to obtain (stable) asymptotic estimates. As a consequences of this
approach the solutions are often difficult to generalize because they usually depend on the
particular issue being investigated.

Perhaps the author who first suggested a solution to the singularity of the information
matrix susceptible of generalization was Silvey (1959). Within the non-identification
problem he proposed to replace the information matrix2iy,) + F where F' is an
appropriate matrix obtained imposing some restrictions on the parameters of the model so
that the restricted parameters are identified and the "new” matrix is positive definite. More
precisely, he suggested to §ét= H/ H, whereH, is the jacobian of ad hocconstraints
imposed orf. In his work Silvey showed that statistical tests (Wald or Score) based on
the inverseB(6y)~ = (B(6y) + H.H,) ! are "standard” in the sense that under the null
hypothesis they are asymptotically central chi-square distributions. Silvey’s approach is
very simple and elegant but, is not applicable when the singularit(6f) cannot be
removed by constraining some parameters because the singularity of the matrix is caused,
for example, by one or more nuisance parameters vanishing under the null hypothesis.

Several authors (Poskitt and Tremayne, 1981) have pointed ouBthigt™ is a gen-
eralized inverse of3(,). Then, a first step towards a generalization of the above ap-
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proach could be based on the search of an estimator and consequently on the choice of
an appropriate matri¥’ such that a "standard” test based on a generalized inverse of the
information matrix is possible. Unfortunately, this approach is unfeasible because of the
non-uniqueness aB(6,)~ which causes some difficulties in finding a test invariant to

the choice of this matrix. To overcome the invariancy problem we propose to replace
B(6y)~ by the Moore-Penrose pseudoinver3@,)* which always exists and is unique.

Of course, in this case the main problem is to find an estimator computed somehow which
Is compatible (at least asymptotically) with this matrix. The search of this estimator is the
goal of the paper.

The work is organized as follows. In Section 2 we review the asymptotic properties of
maximum likelihood estimator in the regular case both from an analytical and geometrical
point of view. In this section we repropose well known results which are preliminary for
subsequent sections. In Section 3 we analyze the consequences of the singularity of the
information matrix on the asymptotic properties of maximum likelihood estimator. We
show that in a neighborhood of the true parameter still exists a solution to the likelihood
equations but this solution is no more unique. Nothing we can say about the asymptotic
distribution of the estimator. Section 4 is devoted to describe how to pick up one of the
solutions which exist near the true parameter. We show that such an estimate can be
chosen, following Silvey’s idea, replacirig(6,) by B(6y) + A\, A > 0 a scalar and an
identity matrix of appropriate dimension, letting— 0. In this way a solution near the
maximum likelihood estimate can be found. We prove that this estimator is consistent and
asymptotically normally distributed with variance-covariance matrix approximated by the
Moore-Penrose pseudoinverse. These properties allow one to construct a Wald-type test
statistic with a "standard” distribution both under the null and the alternative hypotheses.
Finally, in Section 4 a numerical solution is given and a simulation of the properties of
the estimator of the Engle’s model is analyzed.

2 The Regular Case

The theory is said to be regular if, in a neighborhood of the true paramigtéthe
log-likelihood function is closely approximated, in probability, by a concave quadratic
function whose maximum point converges in some efficient sense to the true parameter
value as the sample size increases. Conditions ensuring this are called regular conditions”
(Cheng and Traylor, 1995).

Let Us = {6;]|0 — 6y]] < d} be a neighborhood of, where ||.|| is the square
norm; z = (1, xe, ..., T, ....) @ given sequence of independent observation& cand
logL(0) = >""_ log f(x;; 0) the log-likelihood function defined of.

We assume the following conditions (Aitchison and Silvey, 19%8)- © is a com-
pact subset of the Euclidian k-space #jds an interior point.§2— For everyd € ©,

2(0) = Eyllogf(t,0)] thatis, the expected value bfy f (¢; ) taken with respect to a den-
sity function characterized by the parameter veéioexists.§3— For everyd € Us (and



for almost allt € R ) first and second order derivatives with respect tf log f(t;6)
exist, are continuous functions @f and are bounded by functions independent) of
whose expected values are finitg4— For everyd € Us and fori,j,m = 1,---k,
|(9%/06,00;00,,)logf(t,0)] < G(t) where Ey[G(t)] = M(t). §5— For everyf € Us
the information matrix in an observation, is positive definite with latent ropts p, <
w0 < ke

In the regular case the classical proof of the consistency of a solution of the likelihood
equationsDlogL(f) = 0, is based on the (asymptotic) analysidinof the behavior of
the maximum point of the quadratic model obtained from a Taylor series expansion of
n~tlogL(#) aboutd,

1 1 1, Lo, L o
ﬁlogL(H) = nlogL(Hg) + nD logL(00)h + 2nh D?logL(6y)h + 6h V(z;0%)  (2)

whereh = 0 — 60y; D = [0/00;] © = 1,--- ,k is the column vector of a differential
operator;D? = [9?/060,00,] i,j = 1,--- , k is the matrix of second derivative®;(z; 6*)
is a vector whosé" component may be expressed in the form (6 —6,)' A;(6*)(0 —6,),
A,(6*) being a matrix whoséj, m) element ig9°/96,00;00,,) i, log f (x, 0*) andg*
a point such thalf 6* — 6, ||<|| 0 — 6, || -

By imposing the first order necessary conditions for a maximum to the funion
or by expanding the likelihood equations abéyafter rescaling by.~!, we have:

1 1 1
EDlogL(HO) + EDQZOQL(QO)h + §V(I; 0*)=0 (3)

ConditionsF1 — F4 ensure that, for large enough n'logL(6,) is nearz(6,),
| n=tDlogL(8y) || is small,—n~tD%logL(6,) is near a certain positive definite matrix
B(6y) and(9?/96,00;00,,)log f (z,,6*) is bounded irUs. Asn goes to infinity, thej, m)
element ofn "' A;(6*) converges in probability to its expected value that exists and does
not depend ord. Therefore,V (x; 6*) converges in probability to a functiom(z), con-
tinuous onJs and such that m(x) || is bounded irUs by a positive number, say. Then,
for largen, n~'logL(#) can be approximated by the following quadratic model,

Q(6) = 2(f) — S B(bo)h + Wm(x)5” 4)

Moreover we have the following result

Lemma 1. (Aitchison and Silvey, 1958). Subject to the conditigis— §4 for large

enough n, and sufficiently small, the likelihood equations have a solution 6, — 6, € Uy
if (and only if) it satisfies a certain equation of the form

—B(0)h +m(x)d* =0 (5)

wherem(z) is a continuous function obis and || m(x) || is bounded inJ; by a positive
numberr, say.



Proof. Itis a straightforward generalization of Créans proof. See Aitchison and Silvey
(1958) for details of the proof. O

The fact thatB(6,) is positive definite (conditiorg5) allows one to state that, if
is less than a certain value, a solution to the system of equéiipexists, is unique
and belongs td/;. Because) can be chosen arbitrarily small, this is sufficient to show
the statistical consistency of a solution to the likelihood equations. Indeed, we have the
following Lemma

Lemma 2. if B(6y) is positive definite and < u/7 wherey, > 0 is the minimum
eigenvalue of3(f,), thenh is the unique solution of equatidh) belonging toU;

Proof. If B(6,) is positive definite then the latent roots are all positive and the equation
(5) has a unique solution given By= B~*(6)m(x)d?.
Because| B~1(6p) m(z) || < ||m(z)||max (u;*),i=1,---,k, then

~ _ _ T
Il = (1B (80) m(x) || 6 < [[m() ||y 6% < 52;

If 77" < 6~ which impliess < y, /7 then,|| 1 || < & andh belongs taU. O

Therefore, under conditior§l — §5, for large enough n, andl < 1, /7 there exists
a (unique) consistent solution to the likelihood equations. Moreover, by a straightforward
generalization of Huzurbazar’s results (1948) , we can show/thméximizes the log-
likelihood funtion.

Itis interesting to look at the consistency from a geometrical point of view. In ensuring
the consistency of a solution to the likelihood equations it is important:Afsatshould
have a maximum turning value & and that fors sufficiently smallQ(#) has a unique
maximizing point inUs.

Fig.1 shows the simulated contour lines ofc, 3) for the model(1) with true para-
meteray = 1.2 andg, = 2, sample size 1000 andgenerated by random selection from
a uniform distribution in the intervgl0, 1) held fixed on replications of samples. In the
graph the true parameter is marked with a black point while the maximum likelihood es-
timate (MLE) is marked with a black squarg«, 5) — 2(1.2,2) < 0 in a neighbourhood
of 6y = (1.2, 2) with a maximum of the function(«, #) which occurs in that point and is
equal toz(1.2,2) = log(1/v/27) — (1/2) = —1.41809.

Equation(5) may be seen as the first order necessary conditions for the unconstrained
maximum of the quadratic approximati@nd). Therefore, byLemma 2, the positive
definiteness oB(f,) andd < /7 ensure the existence of such maximizing point, unique
in Us.

From a geometric point of view, the locus of poidéd) — z(6,) is a quadric surface.

Let define the set



Fig. 1: z(a,B) Fig.2: Q(a,B)-2z(co,Bo)

4 - 0.02 -
5 | 0.01
o
(ea
(<o} 0 | 0.00
- (ea N
-2 - _ ~0.01 3
4 . m‘;g;iigsﬂﬁfz.ls 002 &?
I I I I I I I I
-4 -2 0 2 4 -0.02 0.00 0.01 0.02
a a—do
Fig.4: Q(at,B)-2(cto,Bo)
4 - 0.02 - ‘ | | |
2 0.01 LA R
e A
(<o} 0 | 0.00 e 5
(eal dI1BIN4l =
_2 ] _ | D (D (D ID| o
® True Param.:a =0 001 !: ‘8 é ‘g :‘:
= MLE:a=0.05 B=0.05
4 0,02 i
I I I I ’ I I I I
-4 -2 0 2 4 -0.02 0.00 0.01 0.02
a a—=0dp

1
Co={0; Q0) — 2(6p) <0} = {9; — W' B(fo)h + W'm(x)0? < o} (6)
then, in the regular case, we have the followingnma

Lemma 3. For anyd, Cy is non empty and bounded.

Proof. Because of the positive definitenessi®f,) the quadric surface may be written
as

Q(6) — =(60) = —5 (b — R B(8o)(h — ) + 5 < 0



whereh = B~1(0,)m(x)6* andd = &2m/(x) B~ (6y)m(x)6% > 0. By the spectral
decompositionB(6,) = P'AP whereA = diag(y,--- ,ux) and P is an orthogonal
matrix, the inequality (0) — z(6y) < 0 may be reexpressed as

k 5 2
S (%) =
i=1 <@>

wherez = P(h — h) andB; = \/1/p;. The transformation = P(h — h) represents a
translation followed by a rotation, sg is equivalent to the set

C, = {z; é <;—)2 > d}

Becausel is greater than zero, the above inequality describes a non empty area inside
an ellipsoid with centeh. Therefore, this area is a bounded set. m

To guarantee the statistical consistency of a solution to the likelihood equations it
IS necessary that the center of the ellipsoid ig/jn This condition is ensured # is
taken sufficiently small. This may be shown in the following way. For edesych that
| & — 6y ||= 6 we have

~GHBO M) < =l [P R0 = =Gt 708 =6 (3 +7)
which is less than zero f < (1/2)uy/7. Q(0) — 2(8y) < 0 implies —h'B(6y)h +
h'm(z)é? < 0 and the inequality is still valid if we divide both terms by Therefore,

for every 6 such that||0 — 6y|| = ¢ and ¢ arbitrarily small (in this case it is sufficient
d < uy/7) we have

1 1 1
—gh’B(HO)h + gh'm(:c)52 = 3h’( — B(0o)h +m(z)6*) =n'g(n) <0 (7)
wheren = h/d with ||n|| = 1 andg(n) = —B(6y)(0 — 6y) + m(z)é? is a continuous
function mappingR” into itself. To get on we require the following Lemma

Lemma 4. (Aitchison and Silvey, 1958) If g is a continuous function mapfifignto
itself with the property that, for evefysuch that|d| = 1, #'g(f) < 0, then there exists a

pointd such that|d|| < 1 andg(d) =0 .

Proof. This result is equivalent to Brouwer's fixed point Theorem. See Aitchison and
Silvey (1958) for a complete proof. ]



Therefore, byLemma 4, in our case we can say that there exists a ppiat(d—6,) /6
such that| 77|| < 1thatis,||6 — 6, || < 6 andg(7) = —B(6)(8 — bo) + m(z)é* = 0.
Moreover, becausB(6,) is positive definite, this point is unique.

Fig. 2 shows the simulated behavior of the quadratic fapta, ) — z(«, ), with a
sample size 1000. Giverthe center of the ellipsoid is iis and becaus&may be chosen
arbitrarily small this point is as close as we like to the centerpénsuring in this way
the consistency of the estimator.

As to the asymptotic distribution of the maximum likelihood estimator, taking the
probability limit of equation(3) after replacing: by %, we have

plim(lDzlogL(eo) + R—) Vnh=—n (8)
n 2n

wheren ~ N (0, B(f)) is the asymptotic distribution of the score scalechby/? and

R* is a matrix whose&'* component may be expressed?ﬂ&i(e*) andé* a point such
that|| 6* — 0, [|<]| 0 — 6o |-

Under above conditionlim (n=1)D?logL(0,) = —B(f,). Moreover, because of
the consistency of the estimatoijm R*/2n = o,(1) so thatplim n'/>h = B~ (6y)n
and asymptotically,'/2 i ~ N (0, B=1(6,)).

3 Singular Information Matrix

As known, the whole problem of maximum likelihood estimation is closely bound up
with the behavior of the function(¢) which should have a unique maximumégt(local
asymptotic identifiability condition). The demands thét) is a maximum at), and that

the information matrix in an observatioB,(6), is positive definite are related. In fact,
under regularity conditions ofi(t; 6), a Taylor series expansion off)) aboutd,, yields

1
2(0) = 2(00) = —5H'BE")h. |67 = 0oll < [[6 — o

so thatB(0*) is positive definite ifz(#) — z(6y) < 0 in a neighbourhood of,. If one
assumes that the rank Bf¢) does not change in an open neighborhoof ¢the Rothen-
berg’s regularity condition oB(6) in 6,), then one can conclude th&%6,) is positive
definite. Moreover, ifB(#) is regular in a neighborhood 6§, the positive definiteness of
B(6,) implies local identifiability off),.

The singularity ofB(6,), only by itself, does not necessarily imply the local uniden-
tifiability of 6,. This fact can be understood from a Taylor series expansiai@ofnear
0o,

2(0) — 2(60) = —%h’B(Qo)h +0(|6 - 60l)



the higher order terms can ensure thét) — z(6,) < 0 for everyf # 6, in a neighbour-
hood off,, even though the quadratic form in the above expression be null.

Moreover, in some statistical applicatiofsis identified butB(#) does not satisfy
the Rothenberg’s regularity condition #y. It may happen thaB(6*) is of full rank and
positive definite for somé* in a neighborhood of, while B(6,) is of lower rank.

Sometimes, we could be interested in doing inference on the parameter of interest
ap, say. In this case it may happen that everBifty), 6, = [af 5], IS not posi-
tive definite andz(6,) is not a maximum turning value af(¢), it may still be the case
that setting the (nuisance) parameteequal to some constant;, the information ma-
trix B(ao, 5°) is positive definite and if Rothenberg’s condition is satisfied in the point
(v, 5°), z(a, 5°) — z(ap, 5°) < 0 in a neighbourhood ofy,. Often this situation oc-
curs for anyg3 as in the so called "indeterminate parameter problem” (Cheng and Traylor,
1995) where the information matrix is usually block diagonal with the northwest sub-
matrix By (ap, #) positive definite satisfying the Rothenberg’s conditiomiy v/ and
the southeast submatri®ss (g, 3) = 0. In this casez(a, 5) — z(ap, ) < 0 anday is
identified for anys.

Fig.3 shows the simulated contour lines g 3) for the model(1) with a sample
size 1000. As said above the information matrix in an observation is now singular and the
graph shows a whole set of maxima of the function , 5) in the pointdy = (0, 3). In this
case z(a, 3) = log(1/v/27) — (1/2)Eo(y — az®)?. If a = 0, Ey(y — az®)? = 0? = 1
for any 3 while if « # 0, Ey(y — ax®)? = 1+ T? where T is a constant. Therefore,
z(a, B) — 2(0,3) = —(1/2)T? < 0 in a sufficiently small neighborhood of = 0 and
B11(0, 3) = 2*8 is positive (definite) for any.

Then, when the information matrix is singular but the parantgter o, /'] is locally
(6 = By) or partially (V3) identified, we can ask how to do inference on the whole
set of parametef or on the parameter of interest, In this regard the starting point
is the analysis of the asymptotic properties of maximum likelihood estimator when the
information matrix is singular.

Let begin with the statistical consistency. We can observelthatma 1 is still valid
because the asymptotic result given by equatigndoes not involve the assumption on
the singularity of the information matrix. The problem rises withnma 2. More pre-
cisely, the problem concerns the existence of a unique solutiontimat satisfies equation
(5). This system can be algebraical consistent or not, in both cases we can write an (ap-
proximate) solution in the following form

b= Ty + hy = BT (6)m(z)8> + [I — B¥(60) B(6p)] u (9)

for someu whereB™ (6,) is the Moore-Penrose pseudoinvers®&of,) andh, = [I — BT (0y)B(0y)] u
is the projection ofu on thekernel of B(6y). It is well known that if the systen() is
algebraical consistent th€f) is a solution to the system, otherwise it is a solution which
minimize ||m(x)d* — B(6y)h]|>.

Of course there is no guarantee thas unique inUs unless we could say something
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on the norm of the arbitrary vectarand on the information matrix. In this regard from
the following inequalities

1B* (60)m()0°|| < pia, 76 and ||[I = B*(00) B(60)] u| < [lull
wherey,,;, is the minimum eigenvalue non zero Bf¢,), we have
IR]] <ty 70 + [l

Let ||lu|| = & § be the norm of, with ¢ > 0. Then,||h|| < 6 if u,} 70 + £ < 1thatis,
if &€ <1 -y} 76 whichis valid if§ < p,..,/7. Therefore, ifs is sufficiently small and
|ul| < (1 —p,t 78)5, we can define a neighborhood @&fwhere we have a solution of
equation(5). However, in this neighborhoddis not unique because thernel of B(6,)
does not consist only of the zero vector, thatis;- B*(6y)B(6y)] v does not vanish for
all w in Us. Then, when the information matrix is singular, a solution to the likelihood
equation is not statistically consistent.

To detect the asymptotic distribution of the maximum likelihood estimator we refer
to (8). Taking the probability limit of the expressions on the left-hand sidegnfprob-
lems rise withR*/2n which is now a quantityD,(1) because the estimator is no more
consistent. Then, we have

plim(%DQZogL(Qo) + g) Vn h= [—B(6h) + F] plim (\/ﬁ }VL) =-n

where the symbols are the same agdih From above equality we observe that if the
information matrix is singular nothing we know about the invertibility of the matrix
[—B(6y) + F] and we can not derive the asymptotic distributiomé&f h.

From a geometric point of view, the s&} defined by(6) is still non empty but unlike
the regular case, now it is unbounded. In fact, when the information matrix is singular the
inequality—37'B(6y)h + h'm(x)6* < 0 may be reexpressed as (Shilov, 1977, p.288)

r k
—%Zniz?—l— Z zivi+d<0
i=1

i=r+1

where,n;, i = 1,--- ,r are the r eigenvalues d@(6,) greater than zeroy = §°Pm(x),
d=(1/2) 32, (+/m:) > 0 and
_ : /e i >0
z=Ph+u with ul—{ 0 if . = 0

In the new space given by the transformatiors= Ph + u the quadric surface may
take many forms according to the number of non-zero eigenvalues (Shilov, 1977, p. 295).
However, this set will always be non empty and unbounded.
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For example, with one eigenvalue zeroJRA we have a pair of parallel lines, R*
with one eigenvalue zero, the surface is generated by translating the ellipsoid described
by the remaining: — 1 eigenvalues in thék — 1)-dimensional space along a perpendicular
to R*~!. In a three-dimensional space we must translate the ellipses in a two dimensional
space along a third axis giving elliptic cylindergig. 4 shows the contour lines of the
quadratic form for the modé€ll).

4 A Solution to the Singularity of the Information Matrix

As said above, in the identification problem Silvey (1959) proposed to replace the singu-
lar information matrixB(6,) by B(6,) + F whereF' is an appropriate matrix obtained
imposing some restrictions on the parameters of the model so that the restricted parame-
ters are identified and the new matrix is positive definite. To generalize Silvey’s approach
we suggest to modify the information matrix adding an arbitrary positive conitatot

the diagonal element dB(6,) producingA,(6y) = B(6y) + A* I wherel is an identity

matrix of appropriate dimension. To investigate the consequences of this transformation
we replaceB(6y) by A, (6y) wherever it appears in the regular theory.

4.1 An Unfeasible Solution

By construction, A, (6,) is positive definite with eigenvalues given hy + \?, i =
1,--+,k, p; > 0and\ > 0 arbitrarily chosen.

Consider first what happens to the quadratic approximatipnAdding and subtract-
ing the quantity;A\* || 6 — 6, ||* to (2), taking the probability limit of both sides and
using conditions§1 — F4, we have that for large, n~'logL(#) — 3A? || § — 6, ||* can be
approximated by the following quadratic model,

P00 = Q) = 33 10— 0y I (10

P(6, ) may be seen as a penalty function giveny) "penalized” by a quadratic
term,|| 6 — 6, ||?, with a penalty paramete?. If we maximize(10), by imposing the first
order necessary conditions we get

—(B(6p) + XN 1)k + m(2)6* = —Ax(0p)h + m(z)6*> =0 (11)

Ay (6y) is positive definite for any. > 0, and(11) is an algebraieonsistent system
of equations with a unique solution given by

Ty = (5A - 90) = (B(0y) + A21) " m(x)o?
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Becausd| A;'(6o)m(x) ||< A~%r, we have|| hy ||< A72762. If § < A27! then
[ T || is in Us. Therefore, giver\ > 0 there always exists @sufficiently small such that
P(6, \) has a unique maximizing point in a neighborhoodpf

In this caseP(0, \) plays the same role &3(0) for the regular case and equatian )
may be seen as an asymptotic result of a Taylor series expansionébafuivhat we
call "penalized” likelihood equations. That is, if we maximize the following "penalized”
likelihood function

1 1
“logL(0) — =X* || 0 — 6, |)? A>0
“logL(9) — 5N 66| A>

then, by imposing the first order necessary conditions, we get the "penalized” likelihood
equations given by

" DiogL(8) ~ N(6 — ) = 0 (12)

that now plays the same role as the likelihood equations for the regular case. Then, we
can restatd.emma 1 as follows

Theorem 1. Subject to the conditior{gl — §4, for large enough n and sufficiently small,
the "penalized” likelihood equations have a solutibn = 0y — 6, € Uy if (and only if) it
satisfies a certain equation of the form given(by) where\ > 0, m(z) is a continuous
function onUs and || m(z) || is bounded irU; by a positive number, say.

Sketch of the ProofA Taylor series expansion ¢12) aboutf, gives

L DiogL(6o) + <lD2zogL<eO> - /\2I> h+t %V(:c; 6") = 0 (13)
n n

Then, under condition§1 — §4, equation(11) is obtained following the same lines of
reasoning as in the regular case. O

Then, aboveAarguments allow one to state that a solution to the "penalized” likeli-
hood equationsh, is statistically consistent for any > 0. Moreover, following the
same line of reasoning as in the regular case, it is immediate to show that asymptotically
n'/2h, ~ N(0,V) whereV = A;'(6y)B(6) A5 (6,) is singular withRank(V) = r.

From a geometric point of view we have the same situation as in the regular case with
B(6y) replaced byA, (6y). In fact, the locus of point® (0, ) — z(6y) is a quadric surface
and the set defined as (f) is equivalent to an area inside an ellipsoid with centdr4n
In fact,

{9; —%h’AA(QO)h 4 Bm(x)8? < o} Py Z (2—)2 + Xk: (m)Q >d
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wherey; = \/1/(u; + A2), A > 0andyu; > 0. This set is non empty and bounded.

As it emerges looking at the "penalized” likelihood equations, the main problem con-
nected to the estimator proposed is its feasibility because givea search of a solution
to (12) depends on the unknown true parameter. In the paper the problem is solved fixing
appropriately the magnitude afso that the knowledge @f is unnecessary.

4.2 A Feasible Solution

Our assumption is to takke small enough, formally\ — 0. In this case we must investi-
gate the consequences of this assumption on the asymptotic properties of a solution to the
"penalized” likelihood equations given by

|1 9 -
;12% - DlogL(6) — A\*(0 — 6y) =0 (14)
The main result is the following Theorem

Theorem 2. Let Rank(B(0,)) = r < k. Subject to the condition§l — §4 for large
enoughn and¢ sufficiently small, equationd4) have a (unique) solutionim, .o h) =
hxo In Uy if (and only if) it satisfies a certain equation of the form

lim [—(B(6) + > I)h + m(z)é* = 0] (15)

A—0

Moreover,
;12%\/5 (é\,\ — 90) =vn <§)\0 — 90) = /i hao ~ N (0, B*(6o))
whereB*(6,) is the Moore-Penrose pseudoinverseigf),) and
Wo=n ﬁ&o B(6y) g ~ (1)

Proof. The if and only if part of the theorem is immediate following the "regular” case.
We show that as. — 0, (15) has a unique solution ifis. In previous section we have

seen that for any, &, is unique inlUs if ¢ < Nr7lorifd = EX2r~twith0 < € < 1.
Therefore, we can reexpreks as

ha = (B(6o) + A1)~ m(2)EN2 7716 = (B(6p) + X1) ' A2s()d
wheres(z) = Em(z)7~! with ||s(z)|| < 1. But

(B(6o) + A1) " A2 = I — (B(6o) + A1) ' B(6,)
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and (Albert, 1971, p.19)

im (B(0p) + A1)~

2 _ 1 1 27\ 1 _7_
lim M= E%(B(QOHA I) " B(6y) =1— Pg

wherePz = B (0y)B(6y) andI — Py is a projector on théernel of B(6,). Therefore,
lim,\_,o/f;/\ = /ﬁ)\o = (I - PB) S((L‘)(S

that is, 1y is the projection of the vector(xz)o on thekernel of the information matrix
with ¢ taken arbitrarily small, formally — 0. Moreover,

[Pxoll = I (T = P) s()3]| < |[s(x)]§ < & 0—0

which proves the first part of the Theorem.
As to the asymptotic distribution, we apply the probability limit(i3) after replac-

ing h by N letting A — 0 and following the same lines of reasoning as in the regular
case. Then, we have théin, .o /7 (@ - 80> tends in distribution to a random vector

limy_q (B(6) + A2I) " wheren ~ N (0, B(6,)). Therefore, asymptotically
. o . -1 -1
lim /7 (eA - eo) ~ N (o, lim (B(60) + A1)~ B(6o) (B(6) + N1 )
It is immediate to show that (Albert, 1972)
lim (B(60) + N1 B(6o) (B(6o) + \21) ™" = B*(6)

whereB™(6,) always exists and is unique.
Finally the last part of the Theorem. By the propertie®of 6, ), the matrixB(6,) B (6,)
is idempotent, then

Rank (B(6o)B* (b)) = tr (B(6o)B*(6)) = tr (PAP'PA*P") = tr (PAATP")
with At = diag (i, 13, -+ , 1) where

it = ;Lj_l if p; >0
J 0 if szo

Therefore,Rank (B(6y)B*(6y)) = r = Rank (B(6,)). Moreover,
B (60)B(80) B"(65) B(69) B* (6y) = B (60)B(6y) B (6,)

then by a Theorem on the quadratic forms (Searle, 1971, p. 69), the chi-square distribution
follows. O
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We conclude this section discussing the relationship betviggrand a solution to
the likelihood equations given k) in the case of a singular information matrix. If we
replace the arbitrary vectarin (9) by s(x)d, we have

b= B*(6o)m(x)6% + [I — B*(60)B(60)] s(x)3 (16)
that is,
h— [I — B*(80)B(6p)] ()8 = h — hyg = B (6g)m(x)d?
buth — hyo = 6, — 0, therefore, inl/s we have
162 = Or0ll = 1B (Bo)m(a) 6> < &
with ¢ arbitrarily small. Lettingy — 0, by (16) we get
b= [I — B*(80) B(6o)] s(2)d + o(6)

and a unique solution itV is found in thekernel of B(6).

5 Numerical solution of penalized likelihood equations

A first order approximation t¢14) aboutf, gives

lim FDzogL(eo) - (—%DglogL(Go) + /\I) (0 —0y) = 0]

2—0 | n
that is,

, 1 1
/1\12% [6 — 6y = (—;D%ogL(@o) + )\I) EDlogL(GO)]

then, we propose the following algorithm
(i) Fix adecreasing sequengs;}, typically {1,107!,1072,-- - } and choose a starting
point6(),
(i) Check the termination condition. When a sufficiently small valué\,ohas been

reached the algorithm terminates.
(i) Find iteratively a solution to

1 1
or = 9t (—EDzlogL(H(T)) + AJ) EDzogL(W))

call #) such solution.
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(iv) Setd™) =), seti =i+ 1, and return tdii).

An estimate of the information matri®(6,) can be computed replacirig by Or0-

A simulation applied to the Engle’s model is presented to support the theoretical re-
sults. Fig. 3(a) shows the simulated distribution of an estimateatftained as a solution
to the penalized loglikelihood equation from 100 generated random samples of size 1000.
This estimate is compared with an ung\erlying normal distribution. In Fig. 3(b) the cumu-
lative distribution of an estimate 6¥,, 1, is compared with a?(1) distribution. From
Figure 3 it emerges the good fits of the simulated distributions.

(@) (b)

1.0 7
0.8 0.8

06 0.6 —

04 — 0.4 —

e Cum. distr.
—— Cum.Norm.Distr.

e Cum. distr.

02 — 02 — x’cdf, 1d.f.

Cumulative Distribution
Cumulative Distribution

0.0 —TL— 0.0 TL=

-0.2 0.0 0.2 04 0 2 4 6 8 10
N
Oxo Wo

Figure 3: Simulated cumulative distribution functionscf, (graphic(a)) and of I
(graphic(b)) for the Engel’'s modelH, : « = 0, sample size 1000, 100 replications.

6 Conclusions

In this paper we proposed a way to solve the singularity of the information matrix. The ap-
proach is based on the definition of a penalized loglikelihood function letting the penalty
parameter going to zero. In this way we get a solution in a neighborhood of the maximum
likelihood estimate with attractive statistical properties. More precisely, the estimator is
consistent and asymptotically normally distributed with variance-covariance matrix ap-
proximated by the Moore-Penrose pseudoinverse of the information matrix. These prop-
erties allow one to construct a Wald-type test statistic with a "standard” distribution both
under the null and alternative hypotheses.
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