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Maximum likelihood estimator and singularity of the
information matrix

Marco Barnabani1
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Abstract: When the model is identified but the information matrix is singular, the classic
asymptotic properties of the maximum likelihood estimator are not clear and an inferential
procedure based on it is not viable. In the paper a solution of a loglikelihood equation
appropriately penalized is shown to be consistent and asymptotically normal distributed
with variance-covariance matrix approximated by the Moore-Penrose pseudoinverse of
the information matrix. These properties allow one to get a quadratic function based
on a standard Chi-square distribution for hypothesis testing. A simulation applied to a
simplified Engle’s model is presented to support the theoretical results.

Keywords: Singular Information Matrix, Moore-Penrose pseudoinverse, Maximum like-
lihood estimator, penalized loglikelihood equation.

1 Introduction

Let f(t; θ) θ′ = [α′ β′] ∈ Θ ⊆ Rk, α ∈ Θr ⊆ Rr , β ∈ Θk−r ⊆ Rk−r , t ∈ R be a density
function continuous onΘ defining the distribution corresponding to the parameterθ in
a neighbourhood of a true unknown parameter value,θ′0 = [α′0 β′0]. In this paper we
tackle the problem of the asymptotic properties of maximum likelihood estimator when
the information matrix is singular and the model is identified. We propose an estimator
which allows one to do inference on the whole set of parameters,θ0 or on the parameter
of interestα0, say.

Statistical literature on the singularity of the information matrix is large (see Rotnitzky
et al. (2000) and the associated bibliografy). Models more relating to this paper concern
hypothesis tests involving parameters not identifiable under the null hypothesis. Consider,
for example, the following simplification of Engle’s (1984) model

y/x ∼ N(αxβ, σ2 = 1), x > 0, H0 : α = 0 (1)

wherex is non-stochastic. In the model the parameterβ is estimable only when the null
hypothesis is false. UnderH0 the hessian matrix is non-singular while the (expected)

1Viale Morgagni, 59 - 50134 Firenze.
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information matrix in an observation,B(θ), given by

B(α = 0 , β) =

[
x2β 0
0 0

]

is nonnegative definite. In this model an inference on the parameter of interest is possible
only if we were able to handleβ somehow. In small samples the loglikelihood function of
bothα andβ can be maximized under the null and the alternative hypothesis, but because
of the singularity of the information matrix the asymptotic properties of the joint estimator
is not clear.

Models of this type abound in nonlinear regression where severalad hocsolutions
have been suggested. For example, Cheng and Traylor (1995) proposed an ”intermedi-
ate model” between the model where parameters are missing and where they are present.
The solution proposed is based on suitable reparameterizations and the success depends
on how well the reparameterization positions the ”intermediate model” between the two
extremes. This procedure seems to be very difficult to apply when the number of vanish-
ing parameters is relatively high. Davies (1977, 1987) proposed an interesting approach
to the problem of hypothesis testing when a nuisance parameter is present only under
alternative. Given a suitable test statistic he suggested treating it as a function of the
underidentified nuisance parameter, basing the test upon the maximum of this function.
The asymptotic distribution of this maximum is not standard but Davies provided an up-
per bound for the significance level of his procedure. It has been observed (Cheng and
Traylor, 1995) that, though elegant, ”Davies’ method is quite elaborate to implement in
practice and difficult to generalize”.

In general, most of the solutions proposed in the statistical literature are based on
suitable reparameterizations of the particular model analyzed so that to remove the causes
of singularity and to obtain (stable) asymptotic estimates. As a consequences of this
approach the solutions are often difficult to generalize because they usually depend on the
particular issue being investigated.

Perhaps the author who first suggested a solution to the singularity of the information
matrix susceptible of generalization was Silvey (1959). Within the non-identification
problem he proposed to replace the information matrix byB(θ0) + F whereF is an
appropriate matrix obtained imposing some restrictions on the parameters of the model so
that the restricted parameters are identified and the ”new” matrix is positive definite. More
precisely, he suggested to setF = H ′

rHr whereHr is the jacobian of rad hocconstraints
imposed onθ. In his work Silvey showed that statistical tests (Wald or Score) based on
the inverseB(θ0)

− = (B(θ0) + H ′
rHr)

−1 are ”standard” in the sense that under the null
hypothesis they are asymptotically central chi-square distributions. Silvey’s approach is
very simple and elegant but, is not applicable when the singularity ofB(θ0) cannot be
removed by constraining some parameters because the singularity of the matrix is caused,
for example, by one or more nuisance parameters vanishing under the null hypothesis.

Several authors (Poskitt and Tremayne, 1981) have pointed out thatB(θ0)
− is a gen-

eralized inverse ofB(θ0). Then, a first step towards a generalization of the above ap-
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proach could be based on the search of an estimator and consequently on the choice of
an appropriate matrixF such that a ”standard” test based on a generalized inverse of the
information matrix is possible. Unfortunately, this approach is unfeasible because of the
non-uniqueness ofB(θ0)

− which causes some difficulties in finding a test invariant to
the choice of this matrix. To overcome the invariancy problem we propose to replace
B(θ0)

− by the Moore-Penrose pseudoinverseB(θ0)
+ which always exists and is unique.

Of course, in this case the main problem is to find an estimator computed somehow which
is compatible (at least asymptotically) with this matrix. The search of this estimator is the
goal of the paper.

The work is organized as follows. In Section 2 we review the asymptotic properties of
maximum likelihood estimator in the regular case both from an analytical and geometrical
point of view. In this section we repropose well known results which are preliminary for
subsequent sections. In Section 3 we analyze the consequences of the singularity of the
information matrix on the asymptotic properties of maximum likelihood estimator. We
show that in a neighborhood of the true parameter still exists a solution to the likelihood
equations but this solution is no more unique. Nothing we can say about the asymptotic
distribution of the estimator. Section 4 is devoted to describe how to pick up one of the
solutions which exist near the true parameter. We show that such an estimate can be
chosen, following Silvey’s idea, replacingB(θ0) by B(θ0) + λI, λ > 0 a scalar andI an
identity matrix of appropriate dimension, lettingλ → 0. In this way a solution near the
maximum likelihood estimate can be found. We prove that this estimator is consistent and
asymptotically normally distributed with variance-covariance matrix approximated by the
Moore-Penrose pseudoinverse. These properties allow one to construct a Wald-type test
statistic with a ”standard” distribution both under the null and the alternative hypotheses.
Finally, in Section 4 a numerical solution is given and a simulation of the properties of
the estimator of the Engle’s model is analyzed.

2 The Regular Case

The theory is said to be regular if, in a neighborhood of the true parameterθ0, ”the
log-likelihood function is closely approximated, in probability, by a concave quadratic
function whose maximum point converges in some efficient sense to the true parameter
value as the sample size increases. Conditions ensuring this are called regular conditions”
(Cheng and Traylor, 1995).

Let Uδ = {θ; ‖θ − θ0‖ ≤ δ} be a neighborhood ofθ0 where‖.‖ is the square
norm; x = (x1, x2, ..., xn, ....) a given sequence of independent observations onX and
logL(θ) =

∑n
i=1 logf(xi; θ) the log-likelihood function defined onΘ.

We assume the following conditions (Aitchison and Silvey, 1958).F1− Θ is a com-
pact subset of the Euclidian k-space andθ0 is an interior point.F2− For everyθ ∈ Θ,
z(θ) = E0[logf(t, θ)] that is, the expected value oflogf(t; θ) taken with respect to a den-
sity function characterized by the parameter vectorθ0, exists.F3− For everyθ ∈ Uδ (and
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for almost allt ∈ R ) first and second order derivatives with respect toθ of logf(t; θ)
exist, are continuous functions ofθ and are bounded by functions independent ofθ
whose expected values are finite.F4− For everyθ ∈ Uδ and for i, j, m = 1, · · · k,
|(∂3/∂θi∂θj∂θm)logf(t, θ)| < G(t) whereE0[G(t)] = M(t). F5− For everyθ ∈ Uδ

the information matrix in an observation, is positive definite with latent rootsµ1 ≤ µ2 ≤
· · · ≤ µk.

In the regular case the classical proof of the consistency of a solution of the likelihood
equations,DlogL(θ) = 0, is based on the (asymptotic) analysis inUδ of the behavior of
the maximum point of the quadratic model obtained from a Taylor series expansion of
n−1logL(θ) aboutθ0

1

n
logL(θ) =

1

n
logL(θ0) +

1

n
D′logL(θ0)h +

1

2n
h′D2logL(θ0)h +

1

6
h′V (x; θ∗) (2)

whereh = θ − θ0; D = [∂/∂θi] i = 1, · · · , k is the column vector of a differential
operator;D2 = [∂2/∂θi∂θj] i, j = 1, · · · , k is the matrix of second derivatives;V (x; θ∗)
is a vector whoseith component may be expressed in the formn−1(θ−θ0)

′∆i(θ
∗)(θ−θ0),

∆i(θ
∗) being a matrix whose(j, m) element is(∂3/∂θi∂θj∂θm)

∑n
t=1 logf(xt, θ

∗) andθ∗

a point such that‖ θ∗ − θ0 ‖<‖ θ − θ0 ‖ .
By imposing the first order necessary conditions for a maximum to the function(2),

or by expanding the likelihood equations aboutθ0 after rescaling byn−1, we have:

1

n
DlogL(θ0) +

1

n
D2logL(θ0)h +

1

2
V (x; θ∗) = 0 (3)

ConditionsF1 − F4 ensure that, for large enoughn, n−1logL(θ0) is nearz(θ0),
‖ n−1DlogL(θ0) ‖ is small,−n−1D2logL(θ0) is near a certain positive definite matrix
B(θ0) and(∂3/∂θi∂θj∂θm)logf(xt, θ

∗) is bounded inUδ. Asn goes to infinity, the(j, m)
element ofn−1∆i(θ

∗) converges in probability to its expected value that exists and does
not depend onθ. Therefore,V (x; θ∗) converges in probability to a function,m(x), con-
tinuous onUδ and such that‖ m(x) ‖ is bounded inUδ by a positive numberτ , say. Then,
for largen, n−1logL(θ) can be approximated by the following quadratic model,

Q(θ) ≡ z(θ0)− 1

2
h′B(θ0)h + h′m(x)δ2 (4)

Moreover we have the following result

Lemma 1. (Aitchison and Silvey, 1958). Subject to the conditionsF1 − F4 for large
enough n, andδ sufficiently small, the likelihood equations have a solutionh̃ = θ̃n − θ0 ∈ Uδ

if (and only if) it satisfies a certain equation of the form

−B(θ0)h + m(x)δ2 = 0 (5)

wherem(x) is a continuous function onUδ and‖ m(x) ‖ is bounded inUδ by a positive
numberτ , say.
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Proof. It is a straightforward generalization of Cramér’s proof. See Aitchison and Silvey
(1958) for details of the proof.

The fact thatB(θ0) is positive definite (conditionF5) allows one to state that, ifδ
is less than a certain value, a solution to the system of equation(5) exists, is unique
and belongs toUδ. Becauseδ can be chosen arbitrarily small, this is sufficient to show
the statistical consistency of a solution to the likelihood equations. Indeed, we have the
following Lemma

Lemma 2. if B(θ0) is positive definite andδ < µ1/τ whereµ1 > 0 is the minimum
eigenvalue ofB(θ0), thenh̃ is the unique solution of equation(5) belonging toUδ

Proof. If B(θ0) is positive definite then the latent roots are all positive and the equation
(5) has a unique solution given bỹh = B−1(θ0)m(x)δ2.

Because‖B−1(θ0) m(x) ‖ ≤ ‖m(x) ‖max (µ−1
i ), i = 1, · · · , k, then

‖ h̃ ‖ = ‖B−1(θ0) m(x) ‖ δ2 ≤ ‖m(x) ‖µ−1
1 δ2 ≤ δ2 τ

µ1

If τµ−1
1 < δ−1 which impliesδ < µ1/τ then,‖ h̃ ‖ < δ andh̃ belongs toUδ.

Therefore, under conditionsF1 − F5, for large enough n, andδ < µ1/τ there exists
a (unique) consistent solution to the likelihood equations. Moreover, by a straightforward
generalization of Huzurbazar’s results (1948) , we can show thath̃ maximizes the log-
likelihood funtion.

It is interesting to look at the consistency from a geometrical point of view. In ensuring
the consistency of a solution to the likelihood equations it is important thatz(θ) should
have a maximum turning value atθ0 and that forδ sufficiently smallQ(θ) has a unique
maximizing point inUδ.

Fig. 1 shows the simulated contour lines ofz(α, β) for the model(1) with true para-
meterα0 = 1.2 andβ0 = 2, sample size 1000 andx generated by random selection from
a uniform distribution in the interval(0, 1) held fixed on replications of samples. In the
graph the true parameter is marked with a black point while the maximum likelihood es-
timate (MLE) is marked with a black square.z(α, β)− z(1.2, 2) < 0 in a neighbourhood
of θ0 = (1.2, 2) with a maximum of the functionz(α, β) which occurs in that point and is
equal toz(1.2, 2) = log(1/

√
2π)− (1/2) = −1.4189.

Equation(5) may be seen as the first order necessary conditions for the unconstrained
maximum of the quadratic approximationQ(θ). Therefore, byLemma 2, the positive
definiteness ofB(θ0) andδ < µ1/τ ensure the existence of such maximizing point, unique
in Uδ.

From a geometric point of view, the locus of pointsQ(θ)− z(θ0) is a quadric surface.
Let define the set

5



Fig. 1:  z(α,β)
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Fig.2:  Q(α,β)− z(α0,β0)

α − α0
β

−
β 0

−0.02 0.00 0.01 0.02

−0.02

−0.01

0.00

0.01

0.02

h
~

Fig. 3:  z(α,β)
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Fig.4:  Q(α,β)− z(α0,β0)
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Cθ ≡ {θ ; Q(θ)− z(θ0) < 0} =

{
θ ; −1

2
h′B(θ0)h + h′m(x)δ2 < 0

}
(6)

then, in the regular case, we have the followingLemma

Lemma 3. For anyδ, Cθ is non empty and bounded.

Proof. Because of the positive definiteness ofB(θ0) the quadric surface may be written
as

Q(θ)− z(θ0) = −1

2
(h− h̃)′B(θ0)(h− h̃) +

1

2
d < 0
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whereh̃ = B−1(θ0)m(x)δ2 andd = δ2m′(x)B−1(θ0)m(x)δ2 > 0. By the spectral
decompositionB(θ0) = P ′ΛP whereΛ = diag(µ1, · · · , µk) and P is an orthogonal
matrix, the inequalityQ(θ)− z(θ0) < 0 may be reexpressed as

k∑
i=1

(
zi

βi

)2

> d

wherez = P (h − h̃) andβi =
√

1/µi. The transformationz = P (h − h̃) represents a
translation followed by a rotation, soCθ is equivalent to the set

Cz ≡
{

z;
k∑

i=1

(
zi

βi

)2

> d

}

Becaused is greater than zero, the above inequality describes a non empty area inside
an ellipsoid with center̃h. Therefore, this area is a bounded set.

To guarantee the statistical consistency of a solution to the likelihood equations it
is necessary that the center of the ellipsoid is inUδ. This condition is ensured ifδ is
taken sufficiently small. This may be shown in the following way. For everyθ such that
‖ θ − θ0 ‖= δ we have

−1

2
h′B(θ0)h+h′m(x)δ2 ≤ −1

2
µ1‖h ‖2+‖h ‖τδ2 = −1

2
µ1δ

2+τδ3 = δ2

(
−1

2
µ1 + τδ

)

which is less than zero ifδ < (1/2)µ1/τ . Q(θ) − z(θ0) < 0 implies−h′B(θ0)h +
h′m(x)δ2 < 0 and the inequality is still valid if we divide both terms byδ. Therefore,
for everyθ such that‖θ − θ0‖ = δ andδ arbitrarily small (in this case it is sufficient
δ < µ1/τ ) we have

−1

δ
h′B(θ0)h +

1

δ
h′m(x)δ2 =

1

δ
h′

( −B(θ0)h + m(x)δ2
)

= η′g(η) < 0 (7)

whereη = h/δ with ‖ η‖ = 1 andg(η) = −B(θ0)(θ − θ0) + m(x)δ2 is a continuous
function mappingRk into itself. To get on we require the following Lemma

Lemma 4. (Aitchison and Silvey, 1958) If g is a continuous function mappingRk into
itself with the property that, for everyθ such that‖θ‖ = 1, θ′g(θ) < 0, then there exists a
point θ̂ such that‖θ̂‖ < 1 andg(θ̂) = 0 .

Proof. This result is equivalent to Brouwer’s fixed point Theorem. See Aitchison and
Silvey (1958) for a complete proof.
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Therefore, byLemma 4, in our case we can say that there exists a pointη̃ = (θ̃−θ0)/δ

such that‖ η̃ ‖ < 1 that is,‖ θ̃ − θ0 ‖ < δ andg(η̃) = −B(θ0)(θ̃ − θ0) + m(x)δ2 = 0.
Moreover, becauseB(θ0) is positive definite, this point is unique.

Fig. 2 shows the simulated behavior of the quadratic formQ(α, β)− z(α, β), with a
sample size 1000. Givenδ the center of the ellipsoid is inUδ and becauseδ may be chosen
arbitrarily small this point is as close as we like to the center ofUδ ensuring in this way
the consistency of the estimator.

As to the asymptotic distribution of the maximum likelihood estimator, taking the
probability limit of equation(3) after replacingh by h̃, we have

plim

(
1

n
D2logL(θ0) +

R∗

2n

)√
n h̃ = −η (8)

whereη ∼ N(0, B(θ0)) is the asymptotic distribution of the score scaled byn−1/2 and
R∗ is a matrix whoseith component may be expressed ash̃′∆i(θ

∗) andθ∗ a point such
that‖ θ∗ − θ0 ‖<‖ θ − θ0 ‖.

Under above conditionsplim (n−1)D2logL(θ0) = −B(θ0). Moreover, because of
the consistency of the estimator,plim R∗/2n = op(1) so thatplim n1/2 h̃ = B−1(θ0)η

and asymptoticallyn1/2 h̃ ∼ N(0, B−1(θ0)).

3 Singular Information Matrix

As known, the whole problem of maximum likelihood estimation is closely bound up
with the behavior of the functionz(θ) which should have a unique maximum atθ0 (local
asymptotic identifiability condition). The demands thatz(θ) is a maximum atθ0 and that
the information matrix in an observation,B(θ0), is positive definite are related. In fact,
under regularity conditions onf(t; θ), a Taylor series expansion ofz(θ) aboutθ0, yields

z(θ)− z(θ0) = −1

2
h′B(θ∗)h, ‖θ∗ − θ0‖ < ‖θ − θ0‖

so thatB(θ∗) is positive definite ifz(θ) − z(θ0) < 0 in a neighbourhood ofθ0. If one
assumes that the rank ofB(θ) does not change in an open neighborhood ofθ0 (the Rothen-
berg’s regularity condition ofB(θ) in θ0), then one can conclude thatB(θ0) is positive
definite. Moreover, ifB(θ) is regular in a neighborhood ofθ0, the positive definiteness of
B(θ0) implies local identifiability ofθ0.

The singularity ofB(θ0), only by itself, does not necessarily imply the local uniden-
tifiability of θ0. This fact can be understood from a Taylor series expansion ofz(θ) near
θ0,

z(θ)− z(θ0) = −1

2
h′B(θ0)h + O(‖θ − θ0‖3)

8



the higher order terms can ensure thatz(θ)− z(θ0) < 0 for everyθ 6= θ0 in a neighbour-
hood ofθ0, even though the quadratic form in the above expression be null.

Moreover, in some statistical applicationsθ0 is identified butB(θ) does not satisfy
the Rothenberg’s regularity condition inθ0. It may happen thatB(θ∗) is of full rank and
positive definite for someθ∗ in a neighborhood ofθ0 while B(θ0) is of lower rank.

Sometimes, we could be interested in doing inference on the parameter of interest
α0, say. In this case it may happen that even ifB(θ0), θ′0 = [α′0 β′0], is not posi-
tive definite andz(θ0) is not a maximum turning value ofz(θ), it may still be the case
that setting the (nuisance) parameterβ equal to some constant,β◦, the information ma-
trix B(α0, β

◦) is positive definite and if Rothenberg’s condition is satisfied in the point
(α0, β

◦), z(α, β◦)− z(α0, β
◦) < 0 in a neighbourhood ofα0. Often this situation oc-

curs for anyβ as in the so called ”indeterminate parameter problem” (Cheng and Traylor,
1995) where the information matrix is usually block diagonal with the northwest sub-
matrix B11(α0, β) positive definite satisfying the Rothenberg’s condition inα0, ∀β and
the southeast submatrixB22(α0, β) = 0. In this casez(α, β)− z(α0, β) < 0 andα0 is
identified for anyβ.

Fig. 3 shows the simulated contour lines ofz(α β) for the model(1) with a sample
size 1000. As said above the information matrix in an observation is now singular and the
graph shows a whole set of maxima of the functionz(α , β) in the pointθ0 = (0, β). In this
case z(α, β) = log(1/

√
2π)− (1/2)E0(y − αxβ)2. If α = 0, E0(y − αxβ)2 = σ2 = 1

for any β while if α 6= 0, E0(y − αxβ)2 = 1 + T 2 where T is a constant. Therefore,
z(α, β)− z(0, β) = −(1/2)T 2 < 0 in a sufficiently small neighborhood ofα = 0 and
B11(0, β) = x2β is positive (definite) for anyβ.

Then, when the information matrix is singular but the parameterθ′0 = [α′0 β′] is locally
(β = β0) or partially (∀β) identified, we can ask how to do inference on the whole
set of parameterθ or on the parameter of interest,α. In this regard the starting point
is the analysis of the asymptotic properties of maximum likelihood estimator when the
information matrix is singular.

Let begin with the statistical consistency. We can observe thatLemma 1 is still valid
because the asymptotic result given by equation(5) does not involve the assumption on
the singularity of the information matrix. The problem rises withLemma 2. More pre-
cisely, the problem concerns the existence of a unique solution inUδ that satisfies equation
(5). This system can be algebraical consistent or not, in both cases we can write an (ap-
proximate) solution in the following form

h̃ = h̃1 + h̃2 = B+(θ0)m(x)δ2 +
[
I −B+(θ0)B(θ0)

]
u (9)

for someu whereB+(θ0) is the Moore-Penrose pseudoinverse ofB(θ0) andh̃2 = [I −B+(θ0)B(θ0)] u
is the projection ofu on thekernel of B(θ0). It is well known that if the system(5) is
algebraical consistent then(9) is a solution to the system, otherwise it is a solution which
minimize‖m(x)δ2 −B(θ0)h‖2.

Of course there is no guarantee thath̃ is unique inUδ unless we could say something

9



on the norm of the arbitrary vectoru and on the information matrix. In this regard from
the following inequalities

‖B+(θ0)m(x)δ2‖ < µ−1
minτδ2 and

∥∥[
I −B+(θ0)B(θ0)

]
u
∥∥ ≤ ‖u‖

whereµmin is the minimum eigenvalue non zero ofB(θ0), we have

‖h̃‖ < µ−1
minτδ2 + ‖u‖

Let ‖u‖ = ξ δ be the norm ofu with ξ > 0. Then,‖h̃‖ < δ if µ−1
minτδ + ξ < 1 that is,

if ξ < 1 − µ−1
minτδ which is valid if δ < µmin/τ . Therefore, ifδ is sufficiently small and

‖u‖ < (1 − µ−1
minτδ)δ, we can define a neighborhood ofθ0 where we have a solution of

equation(5). However, in this neighborhood̃h is not unique because thekernel of B(θ0)
does not consist only of the zero vector, that is,[I −B+(θ0)B(θ0)] u does not vanish for
all u in Uδ. Then, when the information matrix is singular, a solution to the likelihood
equation is not statistically consistent.

To detect the asymptotic distribution of the maximum likelihood estimator we refer
to (8). Taking the probability limit of the expressions on the left-hand side of(8), prob-
lems rise withR∗/2n which is now a quantityOp(1) because the estimator is no more
consistent. Then, we have

plim

(
1

n
D2logL(θ0) +

R∗

2n

)√
n h̃ = [−B(θ0) + F ] plim

(√
n h̃

)
= −η

where the symbols are the same as in(8). From above equality we observe that if the
information matrix is singular nothing we know about the invertibility of the matrix
[−B(θ0) + F ] and we can not derive the asymptotic distribution ofn1/2 h̃.

From a geometric point of view, the setCθ defined by(6) is still non empty but unlike
the regular case, now it is unbounded. In fact, when the information matrix is singular the
inequality−1

2
h′B(θ0)h + h′m(x)δ2 < 0 may be reexpressed as (Shilov, 1977, p.288)

−1

2

r∑
i=1

ηi z
2
i +

k∑
i=r+1

zi γi + d < 0

where,ηi, i = 1, · · · , r are the r eigenvalues ofB(θ0) greater than zero,γ = δ2Pm(x),
d = (1/2)

∑r
i=1(γ

2
i /ηi) > 0 and

z = Ph + u with ui =

{ −γi/ηi if ηi > 0
0 if ηi = 0

In the new space given by the transformationz = Ph + u the quadric surface may
take many forms according to the number of non-zero eigenvalues (Shilov, 1977, p. 295).
However, this set will always be non empty and unbounded.

10



For example, with one eigenvalue zero, inR2 we have a pair of parallel lines, inRk

with one eigenvalue zero, the surface is generated by translating the ellipsoid described
by the remainingk−1 eigenvalues in the(k−1)-dimensional space along a perpendicular
toRk−1. In a three-dimensional space we must translate the ellipses in a two dimensional
space along a third axis giving elliptic cylinders.Fig. 4 shows the contour lines of the
quadratic form for the model(1).

4 A Solution to the Singularity of the Information Matrix

As said above, in the identification problem Silvey (1959) proposed to replace the singu-
lar information matrixB(θ0) by B(θ0) + F whereF is an appropriate matrix obtained
imposing some restrictions on the parameters of the model so that the restricted parame-
ters are identified and the new matrix is positive definite. To generalize Silvey’s approach
we suggest to modify the information matrix adding an arbitrary positive constantλ2 to
the diagonal element ofB(θ0) producingAλ(θ0) = B(θ0) + λ2 I whereI is an identity
matrix of appropriate dimension. To investigate the consequences of this transformation
we replaceB(θ0) by Aλ(θ0) wherever it appears in the regular theory.

4.1 An Unfeasible Solution

By construction,Aλ(θ0) is positive definite with eigenvalues given byµi + λ2, i =
1, · · · , k, µi ≥ 0 andλ > 0 arbitrarily chosen.

Consider first what happens to the quadratic approximation(4). Adding and subtract-
ing the quantity1

2
λ2 ‖ θ − θ0 ‖2 to (2), taking the probability limit of both sides and

using conditionsF1− F4, we have that for largen, n−1logL(θ)− 1
2
λ2 ‖ θ− θ0 ‖2 can be

approximated by the following quadratic model,

P (θ, λ) ≡ Q(θ)− 1

2
λ2 ‖ θ − θ0 ‖2 (10)

P (θ, λ) may be seen as a penalty function given byQ(θ) ”penalized” by a quadratic
term,‖ θ−θ0 ‖2, with a penalty parameterλ2. If we maximize(10), by imposing the first
order necessary conditions we get

−(B(θ0) + λ2 I)h + m(x)δ2 = −Aλ(θ0)h + m(x)δ2 = 0 (11)

Aλ(θ0) is positive definite for anyλ > 0, and(11) is an algebraicconsistent system
of equations with a unique solution given by

ĥλ =
(
θ̂λ − θ0

)
=

(
B(θ0) + λ2I

)−1
m(x)δ2

11



Because‖ A−1
λ (θ0)m(x) ‖≤ λ−2τ , we have‖ ĥλ ‖≤ λ−2τδ2. If δ < λ2τ−1 then

‖ ĥλ ‖ is in Uδ. Therefore, givenλ > 0 there always exists aδ sufficiently small such that
P (θ, λ) has a unique maximizing point in a neighborhood ofθ0.

In this caseP (θ, λ) plays the same role asQ(θ) for the regular case and equation(11)
may be seen as an asymptotic result of a Taylor series expansion aboutθ0 of what we
call ”penalized” likelihood equations. That is, if we maximize the following ”penalized”
likelihood function

1

n
logL(θ)− 1

2
λ2 ‖ θ − θ0 ‖2 λ > 0

then, by imposing the first order necessary conditions, we get the ”penalized” likelihood
equations given by

1

n
DlogL(θ)− λ2(θ − θ0) = 0 (12)

that now plays the same role as the likelihood equations for the regular case. Then, we
can restateLemma 1 as follows

Theorem 1. Subject to the conditionsF1−F4, for large enough n andδ sufficiently small,
the ”penalized” likelihood equations have a solutionĥλ = θ̂λ− θ0 ∈ Uδ if (and only if) it
satisfies a certain equation of the form given by(11) whereλ > 0, m(x) is a continuous
function onUδ and‖ m(x) ‖ is bounded inUδ by a positive numberτ , say.

Sketch of the Proof.A Taylor series expansion of(12) aboutθ0 gives

1

n
DlogL(θ0) +

(
1

n
D2logL(θ0)− λ2I

)
h +

1

2
V (x; θ∗) = 0 (13)

Then, under conditionsF1 − F4, equation(11) is obtained following the same lines of
reasoning as in the regular case.

Then, above arguments allow one to state that a solution to the ”penalized” likeli-
hood equations,̂hλ is statistically consistent for anyλ > 0. Moreover, following the
same line of reasoning as in the regular case, it is immediate to show that asymptotically
n1/2 ĥλ ∼ N(0, V ) whereV = A−1

λ (θ0)B(θ0)A
−1
λ (θ0) is singular withRank(V ) = r.

From a geometric point of view we have the same situation as in the regular case with
B(θ0) replaced byAλ(θ0). In fact, the locus of pointsP (θ, λ)− z(θ0) is a quadric surface
and the set defined as in(6) is equivalent to an area inside an ellipsoid with center inUδ.
In fact,

{
θ ; −1

2
h′Aλ(θ0)h + h′m(x)δ2 < 0

}
⇔



z;

r∑
i=1

(
zi

γi

)2

+
k∑

i=r+1

(
zi√

(1/λ2)

)2

> d





12



whereγi =
√

1/(µi + λ2), λ > 0 andµi > 0. This set is non empty and bounded.
As it emerges looking at the ”penalized” likelihood equations, the main problem con-

nected to the estimator proposed is its feasibility because givenλ the search of a solution
to (12) depends on the unknown true parameter. In the paper the problem is solved fixing
appropriately the magnitude ofλ so that the knowledge ofθ0 is unnecessary.

4.2 A Feasible Solution

Our assumption is to takeλ small enough, formallyλ → 0. In this case we must investi-
gate the consequences of this assumption on the asymptotic properties of a solution to the
”penalized” likelihood equations given by

lim
λ→0

[
1

n
DlogL(θ)− λ2(θ − θ0) = 0

]
(14)

The main result is the following Theorem

Theorem 2. Let Rank(B(θ0)) = r < k. Subject to the conditionsF1 − F4 for large
enoughn andδ sufficiently small, equations(14) have a (unique) solution,limλ→0 ĥλ =

ĥλ0 in Uδ if (and only if) it satisfies a certain equation of the form

lim
λ→0

[−(B(θ0) + λ2 I)h + m(x)δ2 = 0
]

(15)

Moreover,

lim
λ→0

√
n

(
θ̂λ − θ0

)
=
√

n
(
θ̂λ0 − θ0

)
=
√

n ĥλ0 ∼ N
(
0, B+(θ0)

)

whereB+(θ0) is the Moore-Penrose pseudoinverse ofB(θ0) and

W0 = n ĥ′λ0 B(θ0) ĥλ0 ∼ χ2(r)

Proof. The if and only if part of the theorem is immediate following the ”regular” case.
We show that asλ → 0, (15) has a unique solution inUδ. In previous section we have
seen that for anyλ, ĥλ is unique inUδ if δ < λ2τ−1 or if δ = ξλ2τ−1 with 0 < ξ < 1.
Therefore, we can reexpressĥλ as

ĥλ =
(
B(θ0) + λ2I

)−1
m(x)ξλ2τ−1δ =

(
B(θ0) + λ2I

)−1
λ2s(x)δ

wheres(x) = ξm(x)τ−1 with ‖s(x)‖ < 1. But

(
B(θ0) + λ2I

)−1
λ2 = I − (

B(θ0) + λ2I
)−1

B(θ0)

13



and (Albert, 1971, p.19)

lim
λ→0

(
B(θ0) + λ2I

)−1
λ2 = I − lim

λ→0

(
B(θ0) + λ2I

)−1
B(θ0) = I − PB

wherePB = B+(θ0)B(θ0) andI − PB is a projector on thekernel of B(θ0). Therefore,

limλ→0 ĥλ = ĥλ0 = (I − PB) s(x)δ

that is,ĥλ0 is the projection of the vectors(x)δ on thekernel of the information matrix
with δ taken arbitrarily small, formallyδ → 0. Moreover,

‖ĥλ0‖ = ‖ (I − PB) s(x)δ‖ < ‖s(x)‖δ < δ δ → 0

which proves the first part of the Theorem.
As to the asymptotic distribution, we apply the probability limit to(13) after replac-

ing h by ĥλ, letting λ → 0 and following the same lines of reasoning as in the regular

case. Then, we have thatlimλ→0

√
n

(
θ̂λ − θ0

)
tends in distribution to a random vector

limλ→0 (B(θ0) + λ2I)
−1

η whereη ∼ N (0, B(θ0)). Therefore, asymptotically

lim
λ→0

√
n

(
θ̂λ − θ0

)
∼ N

(
0, lim

λ→0

(
B(θ0) + λ2I

)−1
B(θ0)

(
B(θ0) + λ2I

)−1
)

It is immediate to show that (Albert, 1972)

lim
λ→0

(
B(θ0) + λ2I

)−1
B(θ0)

(
B(θ0) + λ2I

)−1
= B+(θ0)

whereB+(θ0) always exists and is unique.
Finally the last part of the Theorem. By the properties ofB+(θ0), the matrixB(θ0)B

+(θ0)
is idempotent, then

Rank
(
B(θ0)B

+(θ0)
)

= tr
(
B(θ0)B

+(θ0)
)

= tr
(
PΛP ′PΛ+P ′) = tr

(
PΛΛ+P ′)

with Λ+ = diag
(
µ+

1 , µ+
2 , · · · , µ+

k

)
where

µ+
j =

{
µ−1

j if µj > 0
0 if µj = 0

Therefore,Rank (B(θ0)B
+(θ0)) = r = Rank (B(θ0)). Moreover,

B+(θ0)B(θ0)B
+(θ0)B(θ0)B

+(θ0) = B+(θ0)B(θ0)B
+(θ0)

then by a Theorem on the quadratic forms (Searle, 1971, p. 69), the chi-square distribution
follows.
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We conclude this section discussing the relationship betweenĥλ0 and a solution to
the likelihood equations given by(9) in the case of a singular information matrix. If we
replace the arbitrary vectoru in (9) by s(x)δ, we have

h̃ = B+(θ0)m(x)δ2 +
[
I −B+(θ0)B(θ0)

]
s(x)δ (16)

that is,

h̃− [
I −B+(θ0)B(θ0)

]
s(x)δ = h̃− ĥλ0 = B+(θ0)m(x)δ2

but h̃− ĥλ0 = θ̃n − θ̂λ0 therefore, inUδ we have

‖θ̃n − θ̂λ0‖ = ‖B+(θ0)m(x)‖δ2 < δ

with δ arbitrarily small. Lettingδ → 0, by (16) we get

h̃ =
[
I −B+(θ0)B(θ0)

]
s(x)δ + o(δ)

and a unique solution inUδ is found in thekernel of B(θ0).

5 Numerical solution of penalized likelihood equations

A first order approximation to(14) aboutθ0 gives

lim
λ→0

[
1

n
DlogL(θ0)−

(
− 1

n
D2logL(θ0) + λI

)
(θ − θ0) = 0

]

that is,

lim
λ→0

[
θ − θ0 =

(
− 1

n
D2logL(θ0) + λI

)−1
1

n
DlogL(θ0)

]

then, we propose the following algorithm

(i) Fix a decreasing sequence{λi}, typically {1, 10−1, 10−2, · · · } and choose a starting
point θ(r).

(ii) Check the termination condition. When a sufficiently small value ofλi has been
reached the algorithm terminates.

(iii) Find iteratively a solution to

θ(r+1) = θ(r) +

(
− 1

n
D2logL(θ(r)) + λiI

)−1
1

n
DlogL(θ(r))

call θ(F ) such solution.
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(iv) Setθ(r) = θ(F ), seti = i + 1, and return to(ii).

An estimate of the information matrixB(θ0) can be computed replacingθ0 by θ̂λ0.
A simulation applied to the Engle’s model is presented to support the theoretical re-

sults. Fig. 3(a) shows the simulated distribution of an estimate ofα obtained as a solution
to the penalized loglikelihood equation from 100 generated random samples of size 1000.
This estimate is compared with an underlying normal distribution. In Fig. 3(b) the cumu-
lative distribution of an estimate ofW0, Ŵ0 is compared with aχ2(1) distribution. From
Figure 3 it emerges the good fits of the simulated distributions.
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Figure 3: Simulated cumulative distribution functions ofα̂λ0 (graphic(a)) and ofW0

(graphic(b)) for the Engel’s model.H0 : α = 0, sample size 1000, 100 replications.

6 Conclusions

In this paper we proposed a way to solve the singularity of the information matrix. The ap-
proach is based on the definition of a penalized loglikelihood function letting the penalty
parameter going to zero. In this way we get a solution in a neighborhood of the maximum
likelihood estimate with attractive statistical properties. More precisely, the estimator is
consistent and asymptotically normally distributed with variance-covariance matrix ap-
proximated by the Moore-Penrose pseudoinverse of the information matrix. These prop-
erties allow one to construct a Wald-type test statistic with a ”standard” distribution both
under the null and alternative hypotheses.
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