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Selection bias in linear mixed models

Leonardo Grilli
Department of Statistics ‘Giuseppe Parenti’, Florence, Italy.

Carla Rampichini
Department of Statistics ‘Giuseppe Parenti’, Florence, Italy.

Summary. The paper investigates the consequences of sample selection in multilevel or mixed models,
focusing on the random intercept two-level linear model under a selection mechanism acting at both
hierarchical levels. The behavior of sample selection and the resulting biases on the regression coef-
ficients and on the variance components are studied both theoretically and through a simulation study.
Most theoretical results exploit the properties of Normal and Skew-Normal distributions. In the case
of clusters of size two, analytic formulae of the bias are provided that generalize Heckman’s formulae.
The analysis allows to outline a taxonomy of sample selection in the multilevel framework that can sup-
port the qualitative assessment of the problem in specific applications and the development of suitable
techniques for diagnosis and correction.

Keywords: clustered data, multilevel model, sample selection, Skew-Normal distribution, truncation.

1. Introduction

In many settings the statistical units are nested in hierarchical structures, such as pupils in schools
or repeated measurements on a set of individuals, with level 1 units (pupils, repeated measure-
ments) embedded in clusters or level 2 units (schools, individuals). This kind of structure often
implies correlated responses at level 1, which can be taken into account by means of mixed mod-
els (Verbeke and Molenberghs, 2000; Goldstein, 2003), also known as multilevel, random effects or
variance components models.

Observational studies are often affected by sample selection, that is the response variable of
principal interest is observed conditionally on the value of another variable. For example, wage
is observed only for people actually working. In regression analysis, including multilevel mod-
elling, sample selection leads to biases if the selection mechanism depends on unobserved variables
correlated with the model errors.

Starting from the work of Heckman in the Seventies (Heckman, 1979), the problem of selection
bias has been thoroughly studied in the context of standard single-level models. See Vella (1998) for
a general review and Puhani (2000) for a review on simulation studies on this topic. The issue of se-
lection bias was tackled by several authors in the framework of panel data (Hausman and Wise, 1979;
Wooldridge, 1995; Kyriazidou, 1997; Vella and Verbeek, 1999; Jensen et al., 2001), usually with
reference to the linear mixed model. The same problem was considered also in the framework of lon-
gitudinal data in Biometrics (Wu and Carroll, 1988; Follmann and Wu, 1995; Saha and Jones, 2005).

However, even if the random effects models for panel or longitudinal data are an instance of
mixed models, their specificity makes the extension of the results to the general multilevel setting not
trivial, especially for the case of cross-sectional studies. A few examples of applied works dealing
with sample selection in multilevel models are Borgoni and Billari (2002), Bellio and Gori (2003)
and Grilli and Rampichini (2007). Anyway, the existing treatments of selection bias in mixed mod-
els do not provide a systematic discussion of the many types of selection mechanisms that can arise
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in a hierarchical framework, nor they discuss at length how the selection bias is affected by the
parameters of the model and of the selection process. In fact, it is essential to recognize that the
phenomenon of selection in a mixed model is much more complex than in a standard fixed effects
model for the following reasons: (i) the selection process can act at different levels, giving rise to a
wide variety of patterns; (ii) the model of interest is quite complex, as it is characterized not only by
the regression coefficients, but also by the variance-covariance structure which is often of primary
interest, so the effect of selection on the variance-covariance structure must be carefully assessed;
(iii) the selection process modifies the hierarchical structure of the data (number of clusters and
cluster sizes), a feature that is relevant in the estimation phase, as it influences the behavior of the
estimation algorithms, the accuracy of the asymptotic approximations and the power of the tests.

The purpose of the work is to investigate the effects of sample selection in multilevel models.
The treatment of the selection problem in the paper is quite general in several respects: (i) the se-
lection mechanism is driven by unobserved factors (errors) at both levels; (ii) the errors determining
the selection are distinct from the errors determining the outcome (though they are allowed to be
perfectly correlated); (iii) the missingness pattern is arbitrary; (iv) the analysis concerns the effect
of selection on the properties of the model, rather than on specific estimators.

The paper is organized as follows. Section 2 presents the model and the selection mechanism.
Section 3 reports theoretical results on sample selection in mixed models, going from broad prop-
erties to analytical formulae. Section 4 reports evidence from a simulation study that illustrates the
theoretical results and gives further insight into the topic. In Section 5 the main findings are sum-
marized. Technical details are arranged in two appendices: Appendix A reviews some properties of
Skew-Normal distributions and reports the proofs of three results of Section 3.2, while Appendix B
shows how to derive the formulae of Section 3.4.

2. The model and the selection mechanism

2.1. The bivariate linear random intercept model
Let us denote the response variables as Y S and Y P , where S stands for Selection and P for
Principal, i.e. the variable of main interest. A selection mechanism is assumed such that Y P is
observed depending on the value of Y S .

The model is made of a couple of linear equations:

Y S
ij = zS

ijθ
S + uS

j + eS
ij

Y P
ij = zP

ijθ
P + uP

j + eP
ij ,

(1)

where j = 1, 2, . . . , J is the cluster (level 2) index and i = 1, 2, . . . , nj is the elementary (level 1)
index: for example, in a panel setting the level 1 units are waves and the level 2 units are individuals,
while in a cross-section framework the level 1 units could be individuals and the level 2 units could
be institutions or geographical areas. Moreover, zij are covariates at level 1 or level 2 and θ are the
corresponding regression coefficients. Each covariate may enter one or both equations. Finally, uj

are level 2 errors, also called random effects, while eij are level 1 errors.
Errors at different levels are assumed to be independent, while at each level the errors are as-

sumed to be iid and independent of the covariates. Though the general discussion on the conse-
quences of sample selection does not rely on distributional assumptions, the analytical developments
will be based on multivariate Normality:

[
eS
ij

eP
ij

]
iid∼ N

([
0
0

]
,

[
σ2

S

σSP σ2
P

])
(2)
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[
uS

j

uP
j

]
iid∼ N

([
0
0

]
,

[
τ2
S

τSP τ2
P

])
. (3)

Assuming that only the sign of Y S
ij is observable, as usual in selection models, the Selection

equation is a binary probit, so σ2
S is not identified (the probit specification implies σ2

S = 1).
In the literature on panel data the model just outlined leads to the so-called random effects

estimator, in contrast to the fixed effects estimator, which is associated with a variant of the model
where the level 2 errors are treated as parameters (Wooldridge, 2002).

In the following the conditioning on the covariates is always implicit, so variances and covari-
ances are in fact residual. The terms marginal and conditional are referred to the random effects.

The marginal variances and covariance are decomposed into level 2 and level 1 components:

var(Y S
ij ) = var(uS

j ) + var(eS
ij) = τ2

S + σ2
S

var(Y P
ij ) = var(uP

j ) + var(eP
ij) = τ2

P + σ2
P

cov(Y S
ij , Y P

ij ) = cov(uS
j , uP

j ) + cov(eS
ij , e

P
ij) = τSP + σSP

and the marginal correlation among the responses is (τSP +σSP )/
√

(τ2
S + σ2

S)(τ2
P + σ2

P ). For each
response, the Intraclass Correlation Coefficient (ICC) is the proportion of variance due to clustering:

ICCS = τ2
S/(τ2

S + σ2
S) (4)

ICCP = τ2
P /(τ2

P + σ2
P ). (5)

2.2. The selection mechanism
Let the variable of interest Y P be observed if and only if the value of the selection variable Y S is
greater than zero:

Y P
ij is observed if and only if Y S

ij > 0 . (6)

This kind of selection operates at level 1, as it causes the missingness of single observations (even
when σSP is null, as in many models for panel or longitudinal data). Note that within a given
cluster the pattern of missingness can be of any kind (“non-monotone missingness”), while in many
studies attention is restricted to the special case of drop-out or attrition, where missingness at a
given occasion implies missingness at all subsequent occasions (Little and Rubin, 2002).

A selection mechanism that acts on the level 1 units modifies the hierarchical structure of the
data in terms of the cluster sizes and possibly also in terms of the number of clusters. The probability
that a whole cluster is eliminated depends on various factors, such as the size of the clusters, the
power of selection (determined by the fixed part of the Selection equation), and the ICC of the
Selection equation. Specifically, leaving other factors unchanged, an increase in the ICC of the
Selection equation leads to an higher probability of whole cluster exclusion.

Other selection mechanisms are possible. For example, a selection mechanism acting at level 2
can be modelled through a Selection equation defined at level 2, so that all the level 1 units belonging
to a cluster with Y S ≤ 0 have a missing Y P . This kind of selection is simpler as it depends only
on level 2 factors, though it is not possible in general to evaluate if it is more or less harmful than a
mechanism that selects the level 1 units.

The selection mechanism generates missing data on Y P . Since the focus of the analysis is on the
Principal equation, the key point is whether the selection mechanism is ignorable (Little and Rubin, 2002).
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In fact, under ignorable selection the analysis can be performed by fitting only the Principal equa-
tion, otherwise some procedure for selection-bias correction must be set up. Assuming a likelihood
inference framework and the usual separability condition on the parameters, the selection mecha-
nism here described is ignorable when both uS

j ⊥⊥uP
j and eS

ij⊥⊥eP
ij , i.e. under Normality when both

covariances σSP and τSP are null: in this case the models for the Selection and Principal equations
can be fitted separately, without any bias or loss of efficiency. The ignorable selection mechanism
is MCAR when θS = 0 and MAR when θS 6= 0.

When the selection mechanism is not ignorable it is of interest to determine the biases arising
when fitting the Principal equation alone.

3. Selection bias in the linear random intercept model

To investigate the consequences of the sample selection mechanism (6) on the Principal equation
of model (1), first note that Y P

ij is observed if and only if wS
ij > −zS

ijθ
S , where

wS
ij = uS

j + eS
ij

is the composite error of the Selection equation. Therefore, in the present context, the term “after
selection” means “conditional on truncation on the composite errors wS

ij”.
Let us consider the i-th level 1 unit of a certain cluster j, assuming that its response Y P

ij is
observed. To derive the properties of the Principal equation of model (1) after selection, the obser-
vations pertaining to other clusters are irrelevant, as independence is assumed among clusters. The
relevant variables are thus the two errors in Y P

ij , namely uP
j and eP

ij , plus all the composite errors
determining selection in the cluster under consideration, namely (wS

1j , . . . , w
S
njj).

Truncation is below for the level 1 units which are observed and above for the others. Therefore
the set of truncation events of the whole cluster is:

Aj =





⋂

h:Y P
hj observed

{
wS

hj > −zS
hjθ

S
}





⋂




⋂

h:Y P
hj missing

{
wS

hj ≤ −zS
hjθ

S
}



 . (7)

Note that Aj is a function of: (i) the cluster size; (ii) the missingness pattern of the cluster, with
2nj−1 admissible patterns (since the response Y P

ij of the i-th unit is assumed to be observed); (iii)
all the covariates of the Selection equation for all the level 1 units of the cluster, {zS

1j , . . . , z
S
njj};

(iv) the regression coefficients of the Selection equation θS . In general, each cluster has a different
Aj .

For convenience, let us define also the truncation event for the i-th level 1 unit of the j-th cluster,
which is assumed to be observed:

Aij = {wS
ij > −zS

ijθ
S}. (8)

For the following discussion it is essential to realize that conditioning on Aij implies a depen-
dence on the features of the level 1 unit under consideration, while conditioning on Aj generates
dependence on the features of the whole cluster the unit belongs to. In the following it will be shown
that the relevant conditioning set is Aj , even if in a special case the conditioning on Aj is the same
as the conditioning on Aij .
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3.1. Potential consequences of sample selection
To evaluate the effect of sample selection on the model for Y P

ij , it is necessary to calculate the mean
and variance of Y P

ij after truncation, i.e. conditional on Aj .
The mean of Y P

ij can be defined marginally or conditionally w.r.t. the random effects (the condi-
tioning on the covariates being implicit). It is well known that in linear mixed models the marginal
and conditional regression coefficients coincide, i.e. a change in a covariate has the same effect on
the marginal mean and on the conditional mean of the response. However, such equivalence may
break down due to sample selection, so the marginal and the conditional coefficients must be treated
separately. Before proceeding it is essential to realize that, even if in mixed models the regres-
sion coefficients have a conditional interpretation, in the linear case the usual likelihood estimation
methods (ML and REML) are based on the closed-form marginal distribution of the response, so
the estimated coefficients are actually marginal coefficients.

Therefore, the derivation of the coefficients being estimated in the model affected by sample
selection requires the calculation of the mean of Y P

ij conditional on Aj , but marginal w.r.t. the
random effects uP

j :

E
(
Y P

ij | Aj

)
= zP

ijθ
P + E

(
uP

j | Aj

)
+ E

(
eP
ij | Aj

)
. (9)

The slope of the k-th covariate zkij , marginal w.r.t. uP
j , is

∂E
(
Y P

ij | Aj

)

∂zkij
= θP

k +
∂E

(
uP

j | Aj

)

∂zkij
+

∂E
(
eP
ij | Aj

)

∂zkij
. (10)

As in non mixed models, sample selection leads to covariate effects which vary from unit to
unit, while the model assumes constant slopes, so the estimated slope of a covariate is an average of
the slope on each unit.

The sum of the two right-most terms of (10) represents the selection bias, i.e. the difference
between the actual coefficient in presence of selection and the corresponding “true” coefficient θP

k .
The bias is given by the sum of a level 2 component and a level 1 component. If the two components
have the same sign, their effects add up, otherwise they partially or totally cancel out.

Even when the selection mechanism is not ignorable, the bias on the coefficient of zkij is null
if zkij is not present in the Selection equation, since in that case zkij is not included in Aj and
thus the derivatives in the right hand side of (10) are both null. Notwithstanding, if zkij is cor-
related with other covariates that appear in both equations, its slope will be estimated with bias
(Wooldridge, 2002).

Since the bias terms are functions of Aj , for a given level 1 unit the selection bias on the regres-
sion coefficients depends on the cluster size, on the missingness pattern, on the covariates zS

ij of the
unit under consideration and on the covariates zS

hj , h 6= i, of the other units of the cluster. Note that
E(eP

ij | Aj) varies for each level 1 unit. On the contrary, E(uP
j | Aj) is the same for all the units of

the cluster, but its derivative in (10) depends on the value of zk, so it is different for each unit when
zk is a level 1 covariate, while it is constant within the cluster when zk is a level 2 covariate.

The dependence of the mean of the errors on the covariates is known as endogeneity, so sample
selection can be seen as a source of endogeneity.

In the multilevel framework it is customary to search for random slopes, i.e. slopes varying
among clusters, so it is possible to find fictitious random slopes if the cluster component of the
variability of the covariate effect is relevant. Therefore, ignoring selection may lead to an incorrect
specification with random slopes.
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Even if the estimated slopes are the marginal ones, it is instructive to look also at the conditional
ones. The mean of Y P

ij conditional on uP
j and Aj is

E
(
Y P

ij | uP
j , Aj

)
= zP

ijθ
P + uP

j + E
(
eP
ij | uP

j , Aj

)
, (11)

so the slope of the k-th covariate zkij conditional on uP
j is

∂E
(
Y P

ij | uP
j , Aj

)

∂zkij
= θP

k +
∂E

(
eP
ij | uP

j , Aj

)

∂zkij
. (12)

Comparing expressions (12) and (10) it is clear that after selection the conditional and marginal
slopes are different.

Contrary to non mixed models, where the residual variance usually is a nuisance, in multilevel
models the variance structure is of primary interest. It is then relevant to assess the effect of selection
on the model variances. The residual variance of Y P

ij after truncation is

V ar
(
Y P

ij | Aj

)
= V ar

(
uP

j | Aj

)
+ V ar

(
eP
ij | Aj

)
+ 2Cov

(
uP

j , eP
ij | Aj

)
. (13)

After selection the variance component structure breaks down: in general, the errors of the Principal
equation are no longer homoscedastic, nor independent, giving rise to inefficient estimators and
incorrect standard errors. The crucial point is that the ICC is no longer defined after selection, since
the decomposition of the variance of Y P requires homoscedastic and independent errors. If the ICC
of the Principal equation (5) is estimated from a misspecified model ignoring selection, one can
reach false conclusions about the role of the hierarchical structure.

To summarize, sample selection in multilevel models modifies the distribution of the model
errors, leading to a complex configuration where the basic model assumptions break down, causing
bias in both slopes and variance components. Unfortunately, in general there are as many bias
formulas as the number of admissible missingness patterns, so, even in a balanced hierarchy, it is
not feasible to write down such formulae, except when the cluster size is small. In addition, the
moments (9) and (13) have quite complex expressions for clusters of size greater than two. In
Section 3.4 the expressions for the special case of a balanced hierarchy with nj = 2 are shown.

In special cases some of the potential biases caused by sample selection do not operate and the
calculation of means and variances becomes simple. In particular, the independencies reported in
Table 1 imply important simplifications. The moments in Table 1 are derived by exploiting the fact
that Aj is a function of (wS

1j , . . . , w
S
njj) and the property that x1⊥⊥x2 implies g1(x1)⊥⊥g2(x2) for

arbitrary random vectors and functions.
Independencies (a1) and (a2) characterize instances where truncation is irrelevant in certain

respects, while independence (b) means that truncation does not corrupt the independence between
errors at different levels in the Principal equation. Combining the independencies of Table 1 leads
to important special cases. For example, when both (a2) and (b) hold the conditional and marginal
slopes are equal.

Another interesting question is whether there exist non trivial cases where it is enough to con-
dition on the truncation event of the unit under consideration, i.e. the distribution of the errors
conditional on Aj is the same as the distribution conditional on Aij . This would lead to simpler
patterns and formulae.

To establish when the independencies of Table 1 hold and when the conditioning reduces to Aij ,
it is necessary to investigate the joint distribution of the errors before and after selection.
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Table 1. Independencies among the model errors and consequences on
some of their moments

Independence Moments

(a1) eP
ij⊥⊥(wS

1j , . . . , w
S
njj) E

�
eP

ij | Aj

�
= E

�
eP

ij

�
= 0

V ar
�
eP

ij | Aj

�
= V ar

�
eP

ij

�
= σ2

P

(a2) uP
j ⊥⊥(wS

1j , . . . , w
S
njj) E

�
uP

j | Aj

�
= E

�
uP

j

�
= 0

V ar
�
uP

j | Aj

�
= V ar

�
uP

j

�
= τ2

P

(b) eP
ij⊥⊥uP

j | Aj E
�
eP

ij | uP
j , Aj

�
= E

�
eP

ij | Aj

�

Cov
�
uP

j , eP
ij | Aj

�
= 0

3.2. Independencies among the errors before and after selection
Let us consider the joint distribution of (wS

ij ,w
S
(i)j , u

P
j , eP

ij , e
P
(i)j), where wS

(i)j = (wS
1j , . . . , w

S
(i−1)j ,

wS
(i+1)j , . . . , w

S
njj) and eP

(i)j = (eP
1j , . . . , e

P
(i−1)j , e

P
(i+1)j , . . . , e

P
njj). Under assumptions (2)-(3) the

distribution before selection is multivariate Normal with zero means and the following covariance
matrix:

V ar




wS
1j
...

wS
ij
...

wS
njj

uP
j

eP
1j
...

eP
ij
...

eP
njj




=




τ2
S + σ2

S . . . τ2
S . . . τ2

S τSP σSP . . . 0 . . . 0
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

τ2
S . . . τ2

S + σ2
S . . . τ2

S τSP 0 . . . σSP . . . 0
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

τ2
S . . . τ2

S . . . τ2
S + σ2

S τSP 0 . . . 0 . . . σSP

τSP . . . τSP . . . τSP τ2
P 0 . . . 0 . . . 0

σSP . . . 0 . . . 0 0 σ2
P . . . 0 . . . 0

...
. . .

...
. . .

...
...

...
. . .

...
. . .

...
0 . . . σSP . . . 0 0 0 . . . σ2

P . . . 0
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

0 . . . 0 . . . σSP 0 0 . . . 0 . . . σ2
P




(14)

In the following it is assumed that σ2
S , σ2

P and τ2
P are strictly positive, while for τ2

S two cases are
considered: (i) τ2

S > 0, i.e. the Selection equation is mixed; (ii) τ2
S = 0, i.e. the Selection equation

is not mixed. Note that if τ2
S = 0 then τSP = 0.

For future reference, let us summarize the given assumptions as follows:

ASSUMPTION 1. The random vector (wS
ij ,w

S
(i)j , u

P
j , eP

ij , e
P
(i)j) has a multivariate Normal dis-

tribution with zero means and covariance matrix (14), with σ2
S > 0, σ2

P > 0 and τ2
P > 0.

Under Normality the zero entries in the covariance matrix represent unconditional independen-
cies. In particular:

eP
ij ⊥⊥ uP

j (15)

eP
ij ⊥⊥ wS

(i)j (16)
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3.2.1. Basic results on independencies among the model errors
The target now is to determine the values of the variance-covariance parameters for which the inde-
pendencies of Table 1 hold.

Since the errors are jointly Normally distributed, the unconditional independencies can be read
from the covariance matrix. Therefore, the cases where independencies (a1) and (a2) hold can be
identified by looking at the covariance matrix (14):

RESULT 1. Under Assumption 1, independence (a1) eP
ij⊥⊥(wS

ij ,w
S
(i)j) holds if and only if σSP =

0.

RESULT 2. Under Assumption 1, independence (a2) uP
j ⊥⊥(wS

ij ,w
S
(i)j) holds if and only if τSP =

0.

In the light of (15), (a1) implies that eP
ij is independent of all the other model errors, so it is inde-

pendent of uP
j also after truncation. Similarly, (a2) implies that uP

j is independent of all the other
model errors, , so it is independent of eP

ij also after truncation. Therefore, if τSP = 0 or σSP = 0,
then eP

ij⊥⊥uP
j | Aj .

When the Selection equation is not mixed (τ2
S = 0) then τSP = 0 and the following Result

holds:

RESULT 3. Under Assumption 1 and τ2
S = 0, independence (b) eP

ij⊥⊥uP
j | Aj holds.

When the Selection equation is mixed, τSP = 0 or σSP = 0 are sufficient conditions for
independence (b) eP

ij⊥⊥uP
j | Aj . However, it is not straightforward to prove that such condi-

tions are also necessary since, given a set of jointly Normal random variables, after truncation
on some components the joint distribution of the subset of the non truncated variables is no more
Normal. Nevertheless, such distribution is a member of the Unified Skew-Normal (SUN) family
of Arellano-Valle and Azzalini (2006), who proved some properties that can be used to derive the
conditions for independence (b). In Appendix A the following Result is proved:

RESULT 4. Under Assumption 1 and τ2
S > 0, independence (b) eP

ij⊥⊥uP
j | Aj holds if and only

if either τSP = 0 or σSP = 0 or both.

To put another way, uP
j is no longer independent of eP

ij after selection if and only if τSP 6= 0 and
σSP 6= 0, i.e. selection depends on unobservables at both levels.

3.2.2. Relevant truncation events
When studying sample selection in mixed models, it is necessary to condition on the truncation
events of all the units of the cluster, Aj . A basic question is whether there are cases where the
conditioning on the truncation event of the unit under consideration, Aij , is equivalent to the condi-
tioning on Aj .

When the Selection equation is not mixed (τ2
S = 0) τSP = 0 and wS

(i)j is independent of
the remaining errors, so the distribution of uP

j is not affected by truncation at all, while for the
distribution of eP

ij conditioning on Aij is enough. This is stated in the following Result, where the
symbol ∼ stands for equal distributions):

RESULT 5. Under Assumption 1 and τ2
S = 0, uP

j | Aj ∼ uP
j and eP

ij | Aj ∼ eP
ij | Aij .

On the other hand, the properties of the SUN distribution allow to prove that when the Selection
equation is mixed the following results hold (see Appendix A):
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RESULT 6. Under Assumption 1 and τ2
S > 0, eP

ij | Aj ∼ eP
ij | Aij if and only if σSP = 0.

RESULT 7. Under Assumption 1 and τ2
S > 0, uP

j | Aj ∼ uP
j | Aij if and only if τSP = 0.

Results 5 and 6 hold also conditionally on uP
j .

When the Selection equation is mixed the only way to let uP
j or eP

ij be independent of wS
(i)j after

truncation on wS
ij is to to remove the corresponding covariances: if τSP = 0 then uP

j is independent
of the remaining variables, so its distribution is not affected by truncation at all; similarly, if σSP =
0 then eP

ij is independent of the remaining variables, so its distribution is not affected by truncation
at all.

To summarize, when the Selection equation is mixed either truncation is irrelevant or all the
truncation events of the cluster must be considered.

3.2.3. Independence among the level 1 errors
Another kind of independence which may be corrupted after selection is the one among the level 1
errors eP

ij of the same cluster.
When the Selection equation is not mixed (τ2

S = 0) then for any i the couple (wS
ij , e

P
ij) is

independent of all the other model errors, yielding:

RESULT 8. Under Assumption 1 and τ2
S = 0, independence eP

ij⊥⊥eP
i′j | Aj holds for any i 6= i′.

In Appendix A the following result is proved:

RESULT 9. Under Assumption 1 and τ2
S > 0, independence eP

ij⊥⊥eP
i′j | Aj holds for any i 6= i′

if and only if σSP = 0.

It is easy to check that Results 8 and 9 also hold conditionally on (uP
j , Aj), though Result

9 would be different when τ2
SP = τ2

S × τ2
P . In such a case, called shared parameter model

(Follmann and Wu, 1995), uP
j = uS

j = uj , so conditioning on uj makes the composite errors
of the Selection equation independent, i.e. wS

ij⊥⊥wS
i′j | uj , ∀i 6= i′. Therefore, conditional on uj ,

one gets the same result as if the Selection equation was not mixed, namely eP
ij⊥⊥eP

i′j | (uj , Aj)
∀i 6= i′, even if σSP 6= 0.

Note that when eP
ij⊥⊥\eP

i′j | (uP
j , Aj), the usual factorization of the conditional likelihood (e.g.

Skrondal and Rabe-Hesketh, 2004) is no longer valid.

3.3. Selection bias: special cases
The results of the previous Section allow to establish the behavior of selection bias in the general
case and three special cases of Table 2. The configuration σSP = 0 and τSP 6= 0 is often assumed
in models for panel or longitudinal data, but it is unrealistic in a cross-section setting.

First of all, when the Selection equation is mixed either truncation is irrelevant or all the trunca-
tion events must be considered. Sample selection causes a bias in the slopes of covariates entering
both the Principal and the Selection equations. The bias has an additive structure with a cluster-
level component depending on the covariance τSP among cluster-level errors and a subject-level
component depending on the covariance σSP among subject-level errors. Moreover, the marginal
slope is different from the conditional slope whenever τSP 6= 0, i.e. in the general case and special
case b.
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Table 2. Consequences of selection for the general case and three special cases.
General case Case a Case b Case c

τ2
S > 0 τ2

S > 0 τ2
S > 0 τ2

S = 0
τSP 6= 0 τSP = 0 τSP 6= 0 τSP = 0
σSP 6= 0 σSP 6= 0 σSP = 0 σSP 6= 0

one-element
truncation Aij no no no yes

Slope bias
∂E(eP

ij |Aj)

∂zkij
+

∂E(uP
j |Aj)

∂zkij

∂E(eP
ij |Aj)

∂zkij

∂E(uP
j |Aj)

∂zkij

∂E(eP
ij |Aij)

∂zkij

marginal slope =
conditional slope no yes no yes
eP

ij⊥⊥uP
j | Aj no yes yes yes

eP
ij⊥⊥eP

i′j | Aj no no yes yes
Bias on σ2

P downward downward no downward
Bias on τ2

P ? ? downward no
Bias on ICCP ? ? downward upward

As regards the structure of the errors, in cases b and c the key independencies eP
ij⊥⊥uP

j and
eP
ij⊥⊥eP

i′j still hold after selection, so the errors decomposition uP
j + eP

ij still implies the variance
decomposition V ar(uP

j +eP
ij) = V ar(uP

j )+V ar(eP
ij), even if the errors are no more homoscedas-

tic. In such cases it is straightforward to show the effect of selection on the variances. In fact, under
Normality, truncation reduces the variances (e.g. Arellano-Valle and Azzalini, 2006), so σSP 6= 0
implies V ar(eP

ij | Aj) < σ2
P and τSP 6= 0 implies V ar(uP

j | Aj) < τ2
P . Moreover, from

Table 1 and Results 1 and 2, σSP = 0 implies V ar(eP
ij | Aj) = σ2

P and τSP = 0 implies
V ar(uP

j | Aj) = τ2
P . Consequently, in case b of Table 2 the ICC is overestimated, while in

case c the ICC is underestimated.
In case a the independence eP

ij⊥⊥eP
i′j does not hold after selection, while in the general case also

the independence eP
ij⊥⊥uP

j does not hold after selection. In both cases the variance decomposition
V ar(uP

j + eP
ij) = V ar(uP

j ) + V ar(eP
ij) does not hold and the ICC is meaningless.

A special instance of case a is when the Principal equation is not mixed. In such a case the true
ICC is null, but the correlation among the level 1 errors after selection may lead to a significant ICC.
This case is particularly interesting as it shows that the correlation among the observations may be
entirely due to the selection process.

3.4. Analytic expressions of bias
Assuming multivariate Normality before truncation, the analytical expressions of the means and
variances of the errors after selection can be derived through the formulae of Johnson and Kotz (1972)
and Tallis (1961) as reported in Appendix B.

In the following we consider two cases: (i) the cluster size nj is arbitrary, but the relevant
truncation set has only one element; and (ii) the cluster size is nj = 2 for all the clusters.

3.4.1. Bias when the Selection equation is not mixed
The only case where truncation is relevant and the truncation set Aj reduces to the one-element set
Aij is when the Selection equation is not mixed, i.e τ2

S = 0 and thus τSP = 0. In such a case the
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results of Section 3.2 imply:

E
(
Y P

ij | Aij

)
= zP

ijθ
P + E

(
eP
ij | Aij

)
(17)

V ar
(
Y P

ij | Aij

)
= τ2

P + V ar
(
eP
ij | Aij

)
. (18)

The mean and variance of eP
ij given Aij can be derived using formulae (28) and (29) of Appendix

B, where U = eP
ij , W = wS

ij and ‘selection on W’ replaced with Aij = {wS
ij > −zS

ijθ
S}. Taking

into account that τ2
S = 0, the well-known expressions of Heckman (1979) are obtained:

E
[
eP
ij | wS

ij > −zS
ijθ

S
]

=
σSP√

σ2
S

· λ
(
−zS

ijθ
S

√
σ2

S

)
(19)

V ar
[
eP
ij | wS

ij > −zS
ijθ

S
]

= σ2
P −

(σSP )2

σ2
S

· δ
(
−zS

ijθ
S

√
σ2

S

)
, (20)

where λ(x) = φ(x)/ [1− Φ(x)] is the inverse Mills ratio (the hazard function of the standard
Normal distribution) and δ(x) = λ(x) [λ(x)− x] is its first derivative. It can be shown that λ(x)
and δ(x) are increasing functions, with λ(x) > 0 and 0 < δ(x) < 1.

From (17) and (19) the marginal effect of the k-th covariate zkij after selection is:

∂E
(
Y P

ij | Aij

)

∂zkij
= θP

k −
σSP

σ2
S

· δ
(
−zS

ijθ
S

√
σ2

S

)
· θS

k . (21)

In Section 3.2.1 it was shown that when the Selection equation is not mixed the conditional and
marginal means coincides, so in this case expression (21) is valid for the conditional effect too.

The sign of the bias of the slope is determined by the sign of the product σSP θS
k , while the mag-

nitude of the bias depends on: (i) the force of the selection mechanism, σSP /σ2
S ; (ii) the probability

of missingness, determined by the linear predictor of the Selection equation (the lower the linear
predictor, the higher the probability of missingness and the higher the value of the δ function); (iii)
the slope of the covariate under consideration in the Selection equation, θS

k .
From (18) and (20) the variance of the response after selection is

V ar
(
Y P

ij | Aij

)
= τ2

P + σ2
P −

(σSP )2

σ2
S

· δ
(
−zS

ijθ
S

√
σ2

S

)
.

Since δ ranges from 0 to 1, the selection reduces the level 1 variance and thus leads to overesti-
mation of the ICC. The reduction of the level 1 variance depends on the magnitude, but not on the
sign of σSP . Since δ is a function of the linear predictor of the Selection equation, selection induces
heteroscedasticity at level 1.

3.4.2. Bias in the case of a cluster of size nj = 2
In a cluster of size two, i.e. nj = 2, the relevant missingness patterns are only two, namely both
responses Y P on the Principal equation are observed or only one is observed. Moreover, the for-
mulae for the means of the truncated bivariate Normal distribution (Tallis, 1961) are reasonably
manageable, allowing to generalize the well-known formula (21).
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The generalized formulae are useful to study the bias analytically for a balanced hierarchy, i.e.
when nj = 2 for any cluster j. This case arises, for example, in panel studies with two waves and
in some special cross-section applications, e.g. studies on twins.

Without loss of generality, formulae are shown for i = 1, namely Y P
1j is assumed to be observed,

while Y P
2j can be observed (Pattern 1) or missing (Pattern 2). As shown in Appendix B, when both

responses are observed (Pattern 1) the means of the errors of the Principal equation after truncation
are

E

[(
uP

j

eP
1j

)
| wS

1j > −zS
1jθ

S , wS
2j > −zS

2jθ
S

]
=




τSP√
τ2

S+σ2
S

λu,1 (α1j , α2j , ρ)
σSP√
τ2

S+σ2
S

λe,1 (α1j , α2j , ρ)


 (22)

and when only the first unit is observed (Pattern 2) the means are

E

[(
uP

j

eP
1j

)
| wS

1j > −zS
1jθ

S , wS
2j ≤ −zS

2jθ
S

]
=




τSP√
τ2

S+σ2
S

λu,2 (α1j , α2j , ρ)
σSP√
τ2

S+σ2
S

λe,2 (α1j , α2j , ρ)


 (23)

where ρ = ICCS = τ2
S/(τ2

S+σ2
S) ≥ 0 is the ICC of the Selection equation, αij = −zS

ijθ
S/

√
τ2
S + σ2

S

is the standardized truncation point of unit ij, and the functions λu,1, λe,1, λu,2, λe,2 are bivariate
generalizations of the inverse Mills ratio defined in formulae (30) and (31) of Appendix B. When
ρ = 0 both the functions λe,1 and λe,2 reduce to the inverse Mills ratio.

When the Selection equation is not mixed (τ2
S = ρ = 0) then τSP = 0, so from equations (22)

and (23) the mean of uP
j after truncation is null and the mean of eP

1j after truncation is equal to the
classical expression (19) whichever the missingness pattern. Therefore, the bias can be read from
expression (21).

When the Selection equation is mixed, i.e. ρ > 0, from (10) the effect of a covariate zk1j on the
marginal mean of Y P

1j after truncation is

∂E
(
Y P

1j | Aj

)

∂zk1j
= θP

k +
τSP√

τ2
S + σ2

S

∂λu,#

∂zk1j
+

σSP√
τ2
S + σ2

S

∂λe,#

∂zk1j
, (24)

where # denotes the missingness pattern (1 or 2). If the covariate under consideration is at level 1,
the effect is

∂E
(
Y P

1j | Aj

)

∂zk1j
= θP

k −
τSP

τ2
S + σ2

S

∂λu,#

∂α1j
θS

k −
σSP

τ2
S + σ2

S

∂λe,#

∂α1j
θS

k . (25)

However, if the covariate under consideration is at level 2, a change in the covariate affects both
truncation points α1j and α2j , so the effect is

∂E
(
Y P

1j | Aj

)

∂zk1j
= θP

k −
τSP

τ2
S + σ2

S

(
∂λu,#

∂α1j
+

∂λu,#

∂α2j

)
θS

k −
σSP

τ2
S + σ2

S

(
∂λe,#

∂α1j
+

∂λe,#

∂α2j

)
θS

k . (26)

A numerical analysis of the derivatives shows that, for any missingness pattern and any combi-
nation of ρ > 0, α1j and α2j ,

∂λu,#

∂α1j
+

∂λu,#

∂α2j
>

∂λu,#

∂α1j
> 0, 0 <

∂λe,#

∂α1j
+

∂λe,#

∂α2j
<

∂λe,#

∂α1j
.

Therefore, regardless of the level of the covariate, the sign of the bias stemming from the level 2
correlation is determined by the product τSP θS

k , while the sign of the bias stemming from the level
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1 correlation is determined by the product σSP θS
k . However, for a given couple of values of τSP

and σSP , with a level 2 covariate the bias stemming from the level 2 correlation is expanded, while
the bias stemming from the level 1 correlation is attenuated.

Even in the balanced case, when nj = k > 2 it is impractical to write down the formulae for
the bias, since there are many different missingness patterns and the formulae become complex (the
means after truncation are given by sums of k terms involving Normal distribution functions of
order k and k − 1).

Finally, it is worth to compare the two considered instances of analytical expressions for the
bias on the slope: (i) Selection equation not mixed and an arbitrary hierarchy, leading to expression
(21), and (ii) Selection equation mixed and a balanced hierarchy with nj = 2, leading to expression
(24). First of all, in case (ii) there are two additive sources of bias, one for each hierarchical level.
Another basic difference is that in case (i) there is a single bias formula holding for any cluster,
while in case (ii) there is a bias formula for each missingness pattern: as a consequence, the actual
bias is an average across the patterns and thus depends on their frequencies. Moreover, in case (ii)
the bias has different expressions for level 1 and level 2 covariates.

4. Simulation

Since simple analytical expressions of selection bias in mixed models exist only in special cases,
the evaluation of the bias in more general cases requires simulation experiments.

4.1. Simulation design
The simulation study considers a two-level random intercept linear model, with vectors of covariates
zS
ij = (x1ij , x2ij , vj) and zP

ij = (x1ij , x3ij , vj), and vectors of parameters θS = (βS
0 , βS

1 , βS
2 , γS)′

and θP = (βP
0 , βP

1 , βP
3 , γP )′:

Y S
ij = βS

0 + βS
1 x1ij + βS

2 x2ij + γSvj + uS
j + eS

ij

Y P
ij = βP

0 + βP
1 x1ij + βP

3 x3ij + γP vj + uP
j + eP

ij .
(27)

The covariate v is at level 2, i.e. it varies only between clusters, while x1, x2, x3 are purely
within level 1 covariates, i.e. their variation is only within clusters. In a mixed model, purely within
covariates are needed to separate the within and between effects (Neuhaus and Kalbfleish, 1998).
However, the simulation results can be used to evaluate also the bias on a level 1 covariate that
varies both within and between clusters. Indeed, a general level 1 covariate, say zij , varying within
and between clusters, can be written as the sum of two components: zij = zj + (zij − zj), where
zj is the cluster mean (a level 2 covariate) and (zij − zj) is the deviation from the cluster mean (a
purely within covariate). The bias on the slope of zij is a mixture of the biases on the slopes of the
two components depending on the proportion of variance of zij due to the clustering. Therefore,
letting vj = zj and x1ij = (zij − zj), one can appreciate the bias on the general level 1 covariate
zij .

Two of the covariates, x1 and v, enter both equations, while the other covariates are equation-
specific. In this way identification problems are avoided (Wooldridge, 2002).

The errors in model (27) are Normally distributed as in (2) and (3).
The data generation process requires the specification of several aspects: the distribution of the

covariates, the parameter values and the hierarchical structure of the units.
The values of the covariates are drawn from independent standard Normal distributions. They

are generated only once and used in all the experiments and replications. The level 1 covariates are
centered around their sample cluster means to ensure that they are purely within.
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The values of the true parameters used in the experiments are:

• intercepts: βS
0 = 0, βP

0 = 0;

• slopes: βS
1 = βS

2 = γS = 1, βP
1 = βP

3 = γP = 1;

• variances: σ2
S = τ2

S = 1, σ2
P = τ2

P = 1;

• correlations: given unit variances, the level 1 and level 2 correlations are equal to the corre-
sponding covariances σSP and τSP . A two-dimensional grid of values is used by letting σSP

and τSP vary in the interval [-1,+1] with a step of 0.25, for a total of 81 different combina-
tions.

Note that the ICCs (4) and (5) are 0.5, meaning that the clustering of the units is quite relevant,
though in a panel setting such a value is considered as moderate.

The value of βS
0 is crucial in determining the proportion of missing responses on the Principal

equation. Fixing βS
0 to zero leads to a selection that excludes about half of the observations on Y P .

In the set of all the performed simulations the percentage of missingness ranges from 43% to 60%,
with a mean of 51%.

Regarding the hierarchical structure of the data, a balanced design is assumed with a total of
5000 observations, arranged in 100 clusters with 50 observations per cluster. This data structure
is typical of cross-sectional studies, e.g. in the educational setting. The role of the hierarchical
structure is investigated through a specific set of simulations discussed at the end of the Section (see
Table 7).

As already noted, a mechanism selecting the level 1 units destroys the balanced structure of
the data and, in fact, the data used for the simulation study turn out to be highly unbalanced after
selection. In this simulation design the probability of whole cluster exclusion is negligible, so after
selection the number of clusters is unchanged.

The data generation process starts with the calculation of the linear predictors zS
ijθ

S and zP
ijθ

P

for each level 1 unit. Then, for each Monte Carlo replication the following steps are performed:

(a) for each cluster the errors uS
j and uP

j are drawn from a bivariate normal distribution with zero
means, variances τ2

S and τ2
P and correlation τSP ;

(b) for each level 1 unit the errors eS
ij and eP

ij are drawn from a bivariate normal distribution with
zero means, variances σ2

S and σ2
P and correlation σSP ;

(c) for each level 1 unit the responses Y S
ij and Y P

ij are calculated as in (27): at the end of this step
a data set unaffected by selection is obtained;

(d) for each level 1 unit the response on the Principal equation Y P
ij is set to missing if the response

on the Selection equation Y S
ij is less or equal to zero: at the end of this step a data set affected

by selection is obtained.

Given the grid of values for the correlations (see e.g. Table 5), 81 experiments are performed
with 1000 replications each.

The estimates are obtained by fitting the Principal equation alone on the data affected by
sample selection. The estimation method used in the simulation study is REML, with the ridge-
stabilized Newton-Raphson algorithm implemented in the MIXED procedure of the SAS software
(Littell et al., 2006).
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Table 3. Monte Carlo means on 1000 replications of the estimates of σ2
P for different

values of the correlations at level 2 (τSP ) and level 1 (σSP ).
τSP

σSP -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
-1.00 0.78 0.79 0.78 0.79 0.79 0.79 0.79 0.79 0.78
-0.75 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88
-0.50 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.95 0.95
-0.25 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.25 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
0.50 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
0.75 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88
1.00 0.79 0.78 0.78 0.78 0.79 0.78 0.78 0.79 0.79

4.2. Simulation results
The results of the simulation study outlined in Section 4.1 are shown in Tables 3 to 6 concerning,
respectively, the variances σ2

P and τ2
P , and the slopes βP

1 and γP . The estimates of the intercept
βP

0 are not reported as they are not of interest, while the estimates of βP
3 are not reported as the

covariate x3 is independent of the others and does not enter the Selection equation, so the bias is
null.

Table 3 shows that the estimate of the level 1 variance σ2
P is affected only by the level 1 corre-

lation σSP . The bias is downward and depends on the absolute value of σSP .
Table 4 shows that the estimate of the level 2 variance τ2

P is affected by both correlations σSP

and τSP . From the row with σSP = 0 it appears that the effect of τSP is to reduce the estimate of
τ2
P . On the contrary, from the column with τSP = 0, it appears that the effect of σSP is to inflate the

estimate of τ2
P . The reason is that when σSP 6= 0 level 1 errors eP

ij are no more independent after
selection, and indeed the simulations show that they are positively correlated: since such correlation
has a level 2 nature it inflates the level 2 variance.

When the correlations σSP and τSP are both different from zero, the bias on τ2
P is not simply

the sum of the two biases just outlined, because there is a third source of bias due to the lack
of independence after truncation between the level 1 errors eP

ij and the level 2 errors uP
j . The

simulations show that the correlation between eP
ij and uP

j is negative when σSP and τSP have the
same sign, while it is positive when σSP and τSP have opposite signs. Such correlation has a level
2 nature and thus affects the estimate of τ2

P as shown in Table 4. The bias on τ2
P caused jointly by

σSP and τSP is far more important than the bias caused by σSP alone or τSP alone.
As for the ICC, looking at Tables 3 and 4 it is apparent that: (i) when σSP 6= 0 and τSP = 0

the ICC is overestimated; (ii) when σSP = 0 and τSP 6= 0 the ICC is underestimated; (iii) when
σSP 6= 0 and τSP 6= 0 the bias on the ICC is upward if σSP and τSP have opposite signs, otherwise
the direction of the bias depends on the specific values of the correlations σSP and τSP and the bias
may even vanish, e.g. when σSP = 0.50 and τSP = 0.25.

Table 5 shows that the estimate of the slope βP
1 of the level 1 (purely within) covariate x1 is

affected by both correlations σSP and τSP . Looking at the row with σSP = 0 and the column with
τSP = 0, it appears that the direction of the bias depends on the sign of the correlation, while the
magnitude depends on the absolute value of the correlation. A given value of correlation yields
more bias when it is at level 1 rather than at level 2. When the correlations σSP and τSP are both
different from zero, the bias on βP

1 is simply the sum of the biases stemming from the two levels.
Table 6 refers to the slope γP of the level 2 covariate v. The pattern of the bias is analogous to

the one just discussed for βP
1 . The bias on γP is slightly lower than the bias on βP

1 when σSP and
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Table 4. Monte Carlo means on 1000 replications of the estimates of τ2
P for different

values of the correlations at level 2 (τSP ) and level 1 (σSP ).
τSP

σSP -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
-1.00 0.53 0.68 0.81 0.93 1.05 1.16 1.27 1.36 1.46
-0.75 0.62 0.74 0.85 0.94 1.02 1.11 1.18 1.25 1.31
-0.50 0.72 0.81 0.88 0.95 1.01 1.07 1.11 1.14 1.17
-0.25 0.81 0.88 0.93 0.97 1.00 1.03 1.04 1.05 1.05
0.00 0.93 0.95 0.98 0.99 1.00 0.99 0.99 0.96 0.93
0.25 1.04 1.05 1.05 1.02 1.00 0.97 0.93 0.89 0.82
0.50 1.17 1.16 1.11 1.06 1.00 0.95 0.90 0.81 0.72
0.75 1.31 1.26 1.18 1.12 1.03 0.94 0.84 0.74 0.62
1.00 1.46 1.37 1.27 1.16 1.05 0.94 0.80 0.68 0.53

Table 5. Monte Carlo means on 1000 replications of the estimates of βP
1 for different

values of the correlations at level 2 (τSP ) and level 1 (σSP ).
τSP

σSP -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
-1.00 1.23 1.23 1.22 1.22 1.22 1.22 1.22 1.21 1.21
-0.75 1.18 1.17 1.17 1.17 1.16 1.16 1.16 1.16 1.16
-0.50 1.12 1.12 1.11 1.11 1.11 1.11 1.10 1.10 1.10
-0.25 1.06 1.06 1.06 1.06 1.06 1.05 1.05 1.05 1.05
0.00 1.01 1.01 1.00 1.00 1.00 1.00 0.99 0.99 0.99
0.25 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.94 0.93
0.50 0.90 0.90 0.89 0.89 0.89 0.89 0.89 0.88 0.88
0.75 0.84 0.84 0.84 0.84 0.84 0.83 0.83 0.83 0.82
1.00 0.79 0.78 0.78 0.78 0.78 0.78 0.78 0.77 0.77
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Table 6. Monte Carlo means on 1000 replications of the estimates of γP for different
values of the correlations at level 2 (τSP ) and level 1 (σSP ).

τSP

σSP -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
-1.00 1.29 1.27 1.25 1.25 1.24 1.22 1.21 1.20 1.19
-0.75 1.23 1.22 1.20 1.19 1.18 1.16 1.15 1.14 1.13
-0.50 1.17 1.16 1.15 1.13 1.12 1.10 1.09 1.08 1.07
-0.25 1.11 1.10 1.09 1.07 1.06 1.04 1.03 1.01 1.00
0.00 1.06 1.04 1.03 1.02 1.00 0.99 0.97 0.96 0.94
0.25 1.00 0.98 0.97 0.96 0.94 0.93 0.91 0.90 0.88
0.50 0.94 0.92 0.91 0.90 0.89 0.87 0.85 0.84 0.82
0.75 0.87 0.86 0.85 0.83 0.83 0.81 0.80 0.78 0.77
1.00 0.81 0.79 0.79 0.78 0.76 0.76 0.74 0.73 0.71

τSP have opposite signs, and slightly higher in the other cases.
A different bias for γP and βP

1 has implications in the decomposition of the overall slope of a
level 1 covariate in the between and within slopes, because it modifies their relative sizes. To see
that, let zij = x1ij + vj . In the simulation the within slope of zij is βP

1 = 1, while the between
slope is γP = 1, so the overall slope of zij is one. After selection, the within and between slopes
are no more equal due to the differential bias and the analyst may wrongly interpret this result as a
genuine difference in the population rather than a consequence of sample selection.

Finally, Table 7 reports the mean percentage bias for different cluster sizes (nj=2,5,10,50) and
3 combinations of values of the correlations at level 2 (τSP ) and level 1 (σSP ). For any considered
hierarchy, the level 1 correlation induces more bias then the level 2 correlation on the slopes and the
level 1 variance. The bias induced by the level 1 correlation is quite similar among the hierarchies,
while the bias due to the level 2 correlation is substantially larger in hierarchies with small clusters.

The results of the simulation study confirm the general theoretical findings of Sections 3.1 and
3.3. Also the results for βP

1 and γP are in line with the analytical formulae (25) and (26) for the
simple case nj = 2, that is (i) γP is more biased than βP

1 when the selection acts through the level
2 correlation τSP , while (ii) βP

1 is more biased than γP when the selection acts through the level 1
correlation σSP . Result (i) is valid for any considered hierarchy, but result (ii) is no longer valid for
hierarchies with larger nj .

5. Final remarks

The paper has investigated the nature of sample selection in linear mixed models, focusing on the
two-level random intercept case. Selection bias has been studied for both the variance components
and the slopes, separately for between covariates and within covariates. Some results hold regardless
of the distributional assumption, while other results are derived under Normality, partly exploiting
the properties of the Unified Skew-Normal family of Arellano-Valle and Azzalini (2006). Analytic
formulae have been provided in the case of a balanced hierarchy with clusters of size two, extending
the well-known formulae of Heckman (1979). A simulation study has illustrated the theoretical re-
sults and has given some further insight in the topic. Most results are valid for an arbitrary hierarchy
and apply to both panel and cross-sectional data.

The main findings can be summarized as follows:

• Sample selection in mixed models can assume several configurations as it depends on two
sources: correlation at level 1, i.e. among errors at the individual level, and correlation at
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Table 7. Monte Carlo mean percentage bias on 1000 replica-
tions of the estimates of the parameters for different data struc-
tures (J=100, nj=2,5,10,50) and 3 combinations of values of
the correlations at level 2 (τSP ) and level 1 (σSP ).

σSP τSP parameter nj

2 5 10 50
0 0.5 σ2

P 1.4 -0.2 -0.0 -0.1
τ2

P -7.1 -3.2 -3.3 -1.1
βP

1 -7.0 -3.7 -2.0 -0.5
γP -8.0 -6.4 -5.4 -2.7

0.5 0 σ2
P -5.7 -4.7 -5.3 -5.4

τ2
P 1.9 0.1 0.5 -0.1

βP
1 -11.3 -10.4 -10.5 -10.8

γP -8.9 -9.4 -10.8 -11.5
0.5 0.5 σ2

P -3.5 -5.8 -5.1 -5.5
τ2

P -14.4 -11.4 -12.4 -10.4
βP

1 -16.9 -14.0 -12.4 -11.4
γP -16.8 -16.8 -16.7 -14.8

level 2, i.e. among errors at the cluster level. The effect on the estimates of the level 2
correlation depends on the hierarchical structure and it is weaker than the effect of the level
1 correlation, except for the level 2 variance. The two correlations have an additive effect on
the slopes, but for the level 2 variance there is a strong interaction effect.

• The bias in the estimation of a parameter is an average of individual contributions; for any
unit the contribution to the bias depends on the features of the cluster it belongs to, including
the cluster size, the missingness pattern and the covariates of all the units of the cluster. The
dependence on the features of the cluster is due to the correlation of the responses on the
Selection equation: indeed, if the Selection equation is not mixed such dependence vanishes
and the analysis of sample selection is a straightforward extension of the standard case.

• In mixed models the variance components are of primary interest and, indeed, sample selec-
tion can have serious consequences on them. The variance component structure breaks down,
since after selection the errors are heteroscedastic and, in most cases, even not independent.
The level 1 variance is underestimated if there is correlation at level 1, but it does not depend
on the correlation at level 2. The behavior of the level 2 variance is more complex, as the
bias depends on both correlations (level 1 and level 2). When the Selection equation is mixed
and there is correlation at level 1, sample selection corrupts the independencies that underlie
the decomposition of the variance into levels: this affects the level 2 variance, which can be
seriously biased. Depending on the values of the two correlations, the level 2 variance can
be overestimated or underestimated. This fact may also cause a serious bias in the Intraclass
Correlation Coefficient, with a possible overrating or underrating of the role of the hierarchy.

• Other consequences of sample selection in mixed models concern the specification of the
effect of level 1 covariates: (i) even if a covariate has a fixed slope, sample selection induces
a variability of the slope at cluster level that can be wrongly interpreted as evidence of a
random slope in the population; and (ii) sample selection causes different biases on the within
and between slopes of a level 1 covariate, so after selection the difference among within and
between slopes is not the same as in the population.
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The analysis of sample selection shown in the paper is quite general as it investigates the model
properties under an arbitrary selection mechanism. Anyway, the considered model is a special
instance of mixed model in that it is linear and it does not have random slopes. Moreover, most
results are based on Normality. Further research is needed to extend the analysis to more general
mixed models.

The understanding of the nature and implications of sample selection is an essential step, but
the applied researcher then needs reliable techniques to diagnose the selection bias and to correct
it. In the mixed models framework most of the techniques to handle sample selection are specific
for panel data (see e.g. Wooldridge, 2002). Much research is needed to develop effective tools for
general mixed models.
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Appendix

A. Results derived from properties of the SUN distribution

Some properties of the SUN distribution
Let (W′,U′)′ be a random vector with multivariate Normal distribution and let V be a random
vector with the distribution of U conditional on truncation on W, namely U|W > w, where w is
the vector of truncation points. In this formulation all the variables in W are truncated below, but it
is possible to allow for a subset of variables to be truncated above by multiplying them by −1 (this
transformation only affects the sign of the covariances, not their magnitude).

In general V ∼SUN, where SUN stands for the Unified Skew-Normal distribution introduced
by Arellano-Valle and Azzalini (2006). When truncation is on a single variable, i.e. W is scalar, the
distribution of V reduces to the classical Skew-Normal distribution (Azzalini and Dalla Valle, 1996).

A couple of properties of the SUN distribution are useful for proving some results of Section
3.2:

(1) Skewness of a component (subset of variables). A given component of V can be either skewed
or symmetric (i.e. with a regular multivariate Normal distribution): it is skewed if and only if
the corresponding component of U is correlated with at least one component of W.

(2) Independence between two skewed components (subsets of variables). A necessary condition
for independence between two skewed components of V is the existence of at least one par-
tition of W into two independent components. As a corollary, when W is scalar (truncation
on a single variable) two skewed components cannot be independent.

A further interesting property, not used in the proofs of this Appendix, is the following: a
sufficient and necessary condition for independence between a skewed component and a symmetric
component of V is the nullity of their correlation coefficients.

Proof of Result 4 of Section 3.2.1
Sufficiency. If τSP = 0 then uP

j is independent of the remaining errors, so it is independent of eP
ij

also after truncation; similarly, if σSP = 0 then eP
ij is independent of the remaining errors, so it is

independent of uP
j also after truncation.
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Necessity. Let U′ = (uP
j , eP

ij) and W′ = (wS
ij ,w

S ′
(i)j ). If τSP 6= 0 and σSP 6= 0, property (1)

implies that both uP
j and eP

ij are skewed after truncation. In addition, when τ2
S > 0, W cannot be

partitioned into two independent components, so for property (2) the two components uP
j and eP

ij

cannot be independent after truncation.

Proof of Results 6 and 7 of Section 3.2.2
Sufficiency. In both Results 6 and 7, the distributions being compared are trivially equal because of
Results 1 and 2.
Necessity. Let U′ = (uP

j , eP
ij ,w

S ′
(i)j ) and W = wS

ij . Consider the case where the Selection
equation is mixed, i.e. τ2

S > 0. Then the component wS
(i)j of U is correlated with wS

ij , so for
property (1) wS

(i)j is skewed after truncation on wS
ij . Moreover, when τSP 6= 0 also uP

j in U
is correlated with wS

ij , so both uP
j and wS

(i)j in U are skewed and for property (2) they are not
independent after truncation on wS

ij , so the distribution of uP
j is modified by a further truncation on

wS
(i)j . Similarly, when σSP 6= 0, the distribution of eP

ij is modified by a further truncation on wS
(i)j .

Proof of Result 9 of Section 3.2.3
Sufficiency. If σSP = 0 then each error eP

ij is independent of all the other model errors, so eP
ij⊥⊥eP

i′j |
Aj ,∀i 6= i′.
Necessity. Let U′ = (uP

j , eP
1j , · · · , eP

njj) and W′ = (wS
ij ,w

S ′
(i)j ). If σSP 6= 0 for property

(1) truncation on W makes each error eP
ij skewed. Moreover, when the Selection equation is mixed

(τ2
S > 0) W cannot be partitioned into two independent components, so for property (2) two skewed

components cannot be independent, thus eP
ij⊥⊥\eP

i′j | Aj , ∀i 6= i′.

B. Formulae of means and variances of the errors after truncation

General formulae
Let (W′,U′)′ be a random vector with multivariate Normal distribution

[
W
U

]
∼ N

([
0
0

]
,

[
ΣWW ΣWU

ΣUW ΣUU

])

and let W be affected by a general selection mechanism, for example truncation from below or
above. Then the mean and variance of U after selection on W are (Johnson and Kotz, 1972)

E [U| selection on W] = ΣUW Σ−1
WW µ̂W (28)

V ar [U| selection on W] = ΣUU −ΣUW

(
Σ−1

WW −Σ−1
WW Σ̂WW Σ−1

WW

)
ΣWU , (29)

where µ̂W and Σ̂WW are the mean and variance of W after selection, respectively.
If the type of selection is truncation from above or below, the distribution of U after selection

on W belongs to the SUN family (see Appendix A). Even if Arellano-Valle and Azzalini (2006)
derives the moment generating function of the SUN, the calculation of the means and variances
after truncation is easier using formulae (28) and (29). Moreover, such formulae are apt to study the
selection bias in a wider framework, since they hold even when: (i) the type of selection is other than
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truncation from above or below; and (ii) the distribution is not Normal, provided the regressions are
linear and homoscedastic (Johnson and Kotz, 1972).

In the light of formulae (28) and (29), for computing the mean and variance of U after truncation
on W the only difficult point is the calculation of µ̂W and Σ̂WW . The difficulty depends on the
dimensionality of W and on whether the components of W are independent or not. Tallis (1961)
derives the moment generating function of the standard multivariate Normal distribution when each
component is truncated from below. In practice, µ̂W and Σ̂WW have reasonably simple expres-
sions only when the set of truncated variables W has one or two elements, or when its elements
are independent. Note that the case of independent elements of W is not interesting in the present
application to sample selection, because it always coincides with the case where the relevant trun-
cation set has only one element: in fact, ΣWW is the covariance matrix of the composite errors
of the Selection equation, which are independent if and only if the Selection equation is not mixed
(τ2

S = 0), but in such a case the relevant truncation set has only one element (see Section 3.2.2).

Means of the errors after truncation for a cluster of size nj = 2
In the case of a cluster of size two, i.e. nj = 2, the relevant missingness patterns are only two,
namely both responses Y P

1j and Y P
2j are observed or only one, say Y P

1j , is observed. In the following,
the general formula (28) is used to calculate the means of the model errors under the two relevant
missingness patterns. To this end, let U = (uP

j , eP
1j)

′ and W = (wS
1j , w

S
2j)

′. Moreover, let α1j and
α2j be the standardized truncation points

αij =
−zS

ijθ
S

√
τ2
S + σ2

S

, i = 1, 2,

and let ρ be the correlation between wS
1j and wS

2j , which coincides with the ICC of the Selection
equation

ρ = ICCS =
τ2
S

τ2
S + σ2

S

.

In the following, Φ(·) denotes the standard Normal distribution function and Φ2(·, ·; ρ) denotes the
bivariate standard Normal distribution function with correlation ρ.

The matrices ΣUW and Σ−1
WW in formula (28) are:

ΣUW =
(

τSP τSP

σSP 0

)

and

Σ−1
WW =

1
σ2

S (2τ2
S + σ2

S)

(
τ2
S + σ2

S −τ2
S

−τ2
S τ2

S + σ2
S

)

=
1

(τ2
S + σ2

S)(1− ρ2)
×

(
1 −ρ
−ρ 1

)

so their product is

ΣUW Σ−1
WW =

1
(τ2

S + σ2
S)(1− ρ2)

(
τSP (1− ρ) τSP (1− ρ)
σSP −σSP ρ

)
.
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Pattern 1: both Y P
1j and Y P

2j observed
When both responses of the Principal equation are observed ‘selection on W’ stands for condition-
ing on Aj = {wS

1j > −zS
1jθ

S , wS
2j > −zS

2jθ
S}. Moreover, from Tallis (1961) it follows

µ̂W = E

[(
wS

1j

wS
2j

)
| wS

1j > −zS
1jθ

S , wS
2j > −zS

2jθ
S

]

=

√
τ2
S + σ2

S

Φ2 (−α1j ,−α2j ; ρ)
×




φ (α1j)Φ
(

ρα1j−α2j√
1−ρ2

)
+ ρφ (α2j)Φ

(
ρα2j−α1j√

1−ρ2

)

φ (α2j)Φ
(

ρα2j−α1j√
1−ρ2

)
+ ρφ (α1j)Φ

(
ρα1j−α2j√

1−ρ2

)




Using formula (28) the means of the errors of the Principal equation after truncation are

E

[(
uP

j

eP
1j

)
| wS

1j > −zS
1jθ

S , wS
2j > −zS

2jθ
S

]
=




τSP√
τ2

S+σ2
S

λu,1 (α1j , α2j , ρ)
σSP√
τ2

S+σ2
S

λe,1 (α1j , α2j , ρ)




where

λu,1 (α1j , α2j , ρ) =
φ(α1j)Φ

�
ρα1j−α2j√

1−ρ2

�
+φ(α2j)Φ

�
ρα2j−α1j√

1−ρ2

�

Φ2(−α1j ,−α2j ;ρ)

λe,1 (α1j , α2j , ρ) =
φ(α1j)Φ

�
ρα1j−α2j√

1−ρ2

�

Φ2(−α1j ,−α2j ;ρ) .

(30)

Pattern 2: Y P
1j observed, Y P

2j missing
When the response is observed only for one unit, say Y P

1j , ‘selection on W’ stands for conditioning
on Aj = {wS

1j > −zS
1jθ

S , wS
2j ≤ −zS

2jθ
S}. Posing w̃S

2j = −wS
2j the truncation set is equivalent to

{wS
1j > −zS

1jθ
S , w̃S

2j > zS
2jθ

S}, so the formula of Tallis (1961) can still be applied reversing the
signs of the correlation ρ and of the second truncation point α2j , yielding

µ̂W = E

[(
wS

1j

wS
2j

)
| wS

1j > −zS
1jθ

S , wS
2j ≤ −zS

2jθ
S

]

= E

[(
wS

1j

−w̃S
2j

)
| wS

1j > −zS
1jθ

S , w̃S
2j > zS

2jθ
S

]

=

√
τ2
S + σ2

S

Φ(−α1j)− Φ2 (−α1j ,−α2j ; ρ)
×




φ (α1j)Φ
(
−ρα1j−α2j√

1−ρ2

)
− ρφ (α2j)Φ

(
ρα2j−α1j√

1−ρ2

)

−φ (α2j)Φ
(

ρα2j−α1j√
1−ρ2

)
+ ρφ (α1j)Φ

(
−ρα1j−α2j√

1−ρ2

)




where Φ(−α1j)− Φ2 (−α1j ,−α2j ; ρ) = Φ2 (−α1j , α2j ;−ρ).
Using formula (28) the means of the errors of the Principal equation after truncation are

E

[(
uP

j

eP
1j

)
| wS

1j > −zS
1jθ

S , wS
2j ≤ −zS

2jθ
S

]
=




τSP√
τ2

S+σ2
S

λu,2 (α1j , α2j , ρ)
σSP√
τ2

S+σ2
S

λe,2 (α1j , α2j , ρ)






Selection bias in linear mixed models 23

where

λu,2 (α1j , α2j , ρ) =
φ(α1j)Φ

�
− ρα1j−α2j√

1−ρ2

�
−φ(α2j)Φ

�
ρα2j−α1j√

1−ρ2

�

Φ(−α1j)−Φ2(−α1j ,−α2j ;ρ)

λe,2 (α1j , α2j , ρ) =
φ(α1j)Φ

�
− ρα1j−α2j√

1−ρ2

�

Φ(−α1j)−Φ2(−α1j ,−α2j ;ρ) .

(31)
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