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EVALUATION OF KINSHIP IDENTIFICATION SYSTEMS
BASED ON STR DNA PROFILES

By Fabio Corradi and Federico Ricciardi

Università degli Studi di Firenze - Italy

In this paper we detail how to evaluate a kinship identification
system, a probabilistic tool devoted to obtain the Likelihood Ratio
required in deciding if a candidate is a specific member of a family
given some genetic profiles observed in the familial pedigree. The pa-
per considers the LR as a random variable, depending on the still
unobserved genetic DNA evidence of a candidate to identification,
posing attention to the familial expected possibilities to identify a
specific member. In a decision theory perspective, we evaluate which
system, among a set of possible alternatives, is the most suitable to
fulfil the requirements of the parts involved. The proposed system
evaluation, carried on before the identification trial is performed, is
specific for each case and does not require any additional laboratory
expenses, since it makes use of a subset of the employed data. Spe-
cial attention is devoted to the computational aspects of the implied
high dimensional space problem: matters concerning approximations
are discussed. A case study illustrates how the approach proves to be
especially helpful when the distance in the pedigree between the ob-
served DNA donors and the unobserved relative possibly identifying
a candidate is large.

1. Introduction. Nowadays, the identification of individuals trough
DNA evidence can definitely be considered out of its infancy. Reliable kits of
primers allow to determine the genotypes of biological traces typed on some
short tandem repeat (STR) loci. The identification issue is addressed by cal-
culating the ratio of the evidence’s probabilities, usually named Likelihood
Ratio (LR), expressed conditionally to a pair of competitive hypotheses
meaningful for the case and evaluated following largely accepted theoretical
developments as in Evett and Weir (1998), Aitken and Taroni (2004) and
Balding (2006).

This paper focuses on kinship analysis (Brenner (1997)), a form of indi-
rect identification comprising a wide class of problems including disputed
paternities, searching missing persons, family reunifications for citizens of
foreign birth, permanent resident aliens and so on. More precisely, we con-
sider identification cases consisting in the attempt to identify a candidate

Keywords and phrases: Kinship Identification, DNA STR markers, Likelihood ratio dis-
tribution, Decision analysis approach, Utility functions.
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as an unavailable and therefore unobserved specific member of a family, ex-
ploiting the knowledge of some of the family members’ genetic profiles and
the familial relationships.

It is commonly acknowledged that the ability of a System1 to provide
strong support to one of the hypotheses declines according on the “distance”
between the persons who require the identification and provide their DNA,
and the position in the pedigree of the searched individual. Nevertheless,
the LR is almost invariably evaluated by practitioners using the set of loci
included in the kit of primers adopted by their own laboratory and exclu-
sively considering the family members offering themselves to provide their
DNA profiles. Sensitivity analysis about the use of different population and
segregation models has been rarely proposed. Moreover, in standard prac-
tice, no one provides information about the characteristics of the proposed
System, concerning for instance the ability to produce high LR values when
the candidate actually is the member the family, and to obtain small LR
figures when the opposite is true.

In the literature the importance to pre-assess the expected distribution
of the relevant LR has been recognised (Cook et al (1998)), but there is a
limited number of contributions in the field of identification through DNA.
Many of them focus on the LR obtained using sets of real or simulated
cases for which the identification of the candidate was already ascertained,
not providing an evaluation about the characteristic of the System if ap-
plied to a case with different DNA familial evidence. Evett and Buckleton
(1996), using a data base of 1401 different individuals on 4 loci, evaluated
the likelihood ratio’s empirical distribution originated by criminal identifi-
cation cases occurring when two traces are questioned to belong to the same
person. On the same track, in a decision analysis perspective, Taroni et al
(2007) obtained the LR distribution for the criminal identification issue by
simulating 100.000 genetic profiles on 16 loci. All these proposals are con-
fined to the realm of criminal cases, which are not kinship problems. Another
contribution, dealing with kinship analyses, is due to Brenner and Staub
(2003) who evaluated the LR distribution only under the identification hy-
pothesis for 19 different pedigrees and identification issues simulating the
genetic evidence of 100 familial groups. Results were synthesized by the
LR geometric mean and standard deviation showing how these measures
vary according to the distance between the donors and the searched person.

1The term Identification System or just System indicates all the elements required for
the identification, including the familial pedigree, the DNA evidence provided by familial
donors, the hypotheses concerning whether a candidate is or not a well specified family
member, population and segregation models, these latter detailed in Section 2.



3

Also Lauritzen and Mazumder (2008) have studied the problem for different
kinship identification issues proposing an information-theoretic measure to
evaluate the informativeness of different loci. In these latter cases the au-
thors do not refer to a specific identification case, but provide indication on
how the System works with respect to cases invariably different from the
one we are interested in. Finally in the documentation of DNA-VIEW2, a
commercial software for kinship identification, there are indication on how
to evaluate the “value” of the a further additional relative introduced in a
case.

Despite the previous experiences, our proposal consists in ascertaining the
LR distributions specifically for a case of interest and to provide a synthesis
of the results before carrying out the identification, proposing to calculate the
LR including the candidate evidence only if the System shows satisfactory
performance. Ignorance about the System characteristics exposes to the risk
of producing misleading results with an unknown, possibly high, probability.
Evaluating such probabilities and other measures of the System features
allows to answer to very common questions posed by actors involved in the
identification trial and concerning reliability.

The material is arranged as follows. Section 2 refers about some probabil-
ity models for DNA evidence. Section 3 shows how, in kinship analysis, the
LR can be expressed as a function of a candidate’s genetic profile. Section 4
details how to obtain the LR distributions conditionally to the hypotheses
and how to evaluate the System in a decision perspective. Section 5 describes
computational issues. Section 6 proposes a real case concerning an indirect
paternity case. Finally a discussion is given in Section 7.

2. Probability models for DNA evidence. To evaluate the proba-
bility of the observed DNA evidence consider the individuals implied in the
analysis with respect to some nuclear STR DNA loci, among those com-
monly used for forensic identification. In a locus it is possible to observe a
genotype, i.e. two alleles inherited from each of the parents. In a population
and in a specific locus the possible observable alleles are usually assumed
known, A = {a1, . . . , ak}, and the probability to observe them is indicated
by Pr(A = ai) = θi, θ = {θ1, . . . , θk}. The random variable X = (ar, as),
with r ≤ s, represents the uncertainty about genotypes.

The probability distribution for the genotype of an individual is provided
by two kind of models depending on whether their parents are explicitly
included in the model (Segregation models) or not (Population models).
Here two versions of these models are considered to also perform a sensitivity

2http://dna-view.com/simulate.htm
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analysis with respect to the implied assumptions.

2.1. Segregation Models. The baseline segregation model (ML) strictly
follows the first Mendelian law allowing for the transmission of each parental
allele with probability 0.5. The genotype’s probability of a child, c, given
the genotypes of their parents, m and f , if xc = (at, az), xm = (ai, aj) and
xf = (ar, as), is:

Pr(xc | xm, xf ) =
1

4
(1I{ai,ar}(xc) + 1I{ai,as}(xc) + 1I{aj ,ar}(xc) + 1I{aj ,as}(xc)).

A more realistic approach includes in the segregation process a mutation
mechanism. ? discuss a number of such models. Here we consider the Mixed
Mutation Model (MMM) obtained by mixing a single step model - any
mutation can only happen in the strict neighbor of the parental allele - and
the proportional model - whenever a mutation takes place the new allele
value is generated at random from the population allelic distribution.

Following MMM the child allele received from the father (Af
c ) could be

different, since a mutation occurred, from the father transmitted allele, Af ,
which is one of the father’s alleles chosen with probability 0.5. For example,
the probability that the Af

c takes value ar, Pr(Af
c = ar), is given by

(1 − µ) · Pr(Af = ar)
︸ ︷︷ ︸

no mutations

+ µ ·
{(

h + h1I{1∪k}(r)
)

︸ ︷︷ ︸

single step MM weight

×

[(1

2
−

1

2
1I{k}(r)

)

·Pr(Af = ar+1)+
(1

2
−

1

2
1I{1}(r)

)

·Pr(Af = ar−1)
]

︸ ︷︷ ︸

single step MM probability

+

+ (1 − h)θr

}

︸ ︷︷ ︸

proportional MM

.

The mixing proportion is specified according to the idea that a mutation
of more than one repetition in the STR sequence characterizing a locus is
uncommon, so that a h # 0.9 is largely accepted. The overall mutation rate
µ is estimated over a large number of meiosis as in Brinkmann et al (1998).

2.2. Population Models. The baseline model (HW) derives from the con-
ditions introduced by Hardy-Weinberg for a population in equilibrium. The
genotype probability is calculated from the assumed known probabilities
of the alleles in the population. For a generic individual g, the genotype
probability xg = (ai, aj) is:

Pr(xg | θ) = θi · θj · (2 − 1I{ai}(aj)), (2.1)
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which implies that the maternal and paternal alleles are independent condi-
tionally to the population parameters θ.

A more realistic model relaxes the assumption of known alleles’ probabil-
ities and considers them uncertain. If a database of individuals available for
forensic inference can be assumed as a random sample from a reference pop-
ulation, for a locus the observed alleles frequencies, n = {n1, . . . , nk}, with
N =

∑k
i=1 ni, follow a multinomial distribution expressed conditionally to

the parameters θ. If prior probabilities on θ ∼ Dir(δ), δ = {δ1, . . . , δk},
then the posterior distribution is θ|n, δ ∼ Dir(δ1 + n1, . . . , δk + nk). If in
the pedigree involved in the identification trial two or more founders’ alleles
are not observed and their probabilities are uncertain, alleles become de-
pendent. The Uncertainty in Allele Frequencies model (UAF), proposed by
Green and Mortera (2009), states that, if S founders’ alleles are considered,
the marginal distribution of the Sth allele probability assumes value aj is a
mixture formed by the marginal of θ|n, δ, i.e. a Beta, and a probability mass
proportional to the number of ajs observed on the previous S − 1 founder
alleles, i.e.:

θS
j |δ, n ∼

∑k
i δi + N

M
Beta(δj + nj,

k
∑

i!=j

δi + ni) +
1

M

S−1
∑

s=1

1I{as}(aj),

so that

Pr(A = aS
j |δ, n) =

δj + nj

M
+

1

M

S−1
∑

s=1

1I{as}(aj), (2.2)

where M =
∑k

i=1 δi + N + S − 1. Including (2.2) into (2.1) as one of the θs
produces the required genotype probability.

The UAF model is derived by miming the allele probability in an individ-
ual which could appear either because it arises from the reference population
or because it captures the ambient degree relatedness often named coances-
try. The same model can be also derived by the Pòlya urn scheme.

3. Kinship identification.

3.1. Generalities. Consider the relative support to the hypothesis H1,
against H0, provided by the entire observed genetic evidence, generically
indicated by E = e and measured by the likelihood ratio:

LR =
Pr(E = e|H1)

Pr(E = e|H0)
.

Computing the LR does not require the assessment of the prior probabili-
ties for the hypotheses, which simply appear as conditioning circumstances.
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If, instead, H is considered a random variable, with H = {Hz : z ∈ {0, 1}},
and Pr(H0) and Pr(H1) are available, we can use the LR to easily derive
interpretable posterior probabilities:

Pr(H1|E = e) = LR
Pr(H1)

Pr(H0)

(

1 + LR
Pr(H1)

Pr(H0)

)−1
.

On the other hand we can compute the LR able to update a given prior
to a specified posterior:

LR =
Pr(H1|E = e)

Pr(H0|E = e)
×

Pr(H0)

Pr(H1)
. (3.1)

3.2. LR computations based on STR DNA evidence. In kinship identi-
fications we consider an individual, the Candidate (C), and an unobserved
person (U) posed in the pedigree of a certain family in a well defined posi-
tion. Conventionally, H0 is the no-identification hypothesis, which assumes
C not to be related to the family, being for instance a generic member of the
reference population, whereas H1 recognizes C to be the family member U .
Let the set F = {F+,F−, U} contain the family members involved in the
analysis: F+ is the set of relatives providing their DNA profiles while F−

considers the unobserved relatives possibly required to link the members in
F+ to U .

Once the candidate C and the donors in F+ have been typed, the required
LR can be easily computed since the following assertions of conditional
independence hold.

a) States of H only affect the probability to observe xC , i.e. XF+ ⊥⊥ H, so
that:

Pr(xF+ |H1) = Pr(xF+ |H0).

b) If H1 holds, C ≡ U , so that:

Pr(xC |xF+ , xU ,H1) =

{

1, if xC ≡ xU ,

0, otherwise.

c) XC ⊥⊥ XF |H0, so that:

Pr(xC |xF+ ,H0) = Pr(xC |H0).
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Considering a), b) and c) we have:

LR(XC = xC) =

=
Pr(xC , xF+ |H1)

Pr(xC , xF+ |H0)
=

Pr(xC |xF+ ,H1) Pr(xF+ |H1)

Pr(xC |xF+ ,H0) Pr(xF+ |H0)

=

∑

x
F− ,xU∈X

Pr(xC |xF+ , xF− , xU ,H1) Pr(xU |xF+ , xF− ,H1) Pr(xF− |xF+H1)

Pr(xC |, xF+ ,H0)

=

∑

xU∈X

Pr(xC |xF+ , xU ,H1) Pr(xU |xF+ ,H1)

Pr(xC |H0)

=
Pr(xC ≡ xU |xF+ ,H1)

Pr(xC |H0)
. (3.2)

As a result, in kinship identifications based on STR loci, the LR can be
evaluated by assessing two probabilities for XC = xC , conditionally to two
different states of information.

4. The evaluation of the identification System. To evaluate a Sys-
tem, the first activity consists in deriving the LR(XC) distributions condi-
tionally to the states of H; then the decision approach is employed to produce
an evaluation of the System appropriate for the parts.

4.1. The LR distributions. To derive the LR distributions we can take
advantage of the circumstance that loci commonly used in forensic identi-
fication are located at large genetic distance and therefore are considered
independent3.

a) For a generic locus i with ki different allele values, the possible LRs are
determined evaluating (3.2) for all the ki(ki + 1)/2 genotypes. Con-
sidering n loci in the set L = {li : i ∈ {1, . . . , n}}, the number of the
possible genetic profiles observable on C is |LR| =

∏n
i=1 ki(ki + 1)/2

and the LR(XC) support is given by the set:

LR =
{ n

∏

i=1

LR(xC,li) : xC,l1 ∈ Xl1 , · · · , xC,ln ∈ Xln

}

, (4.1)

where Xli is the sample space for the genotype of a generic locus i.

3If segregation or population models would include some parameters shared among all
the loci this form of independence cannot be assumed: here this possibility is not taken
into account.
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b) By (4.1), LR merely depends on the genetic profiles of C and the LR
distributions follow their distributions conditionally to H0 and H1. If
H0 holds, the probability of a genetic profile is obtained by factor-
izing the genotypes’ probabilities over the loci through the assumed
population model.

Pr
(

LR(xC,l1 , . . . , xC,ln)|H0
)

=
n

∏

i=1

Pr(xC,li |H0) ∀xC,li ∈ XC,li . (4.2)

If H1 holds, i.e. C ≡ U , then the genetic profiles probabilities is ob-
tained by factorizing the loci’s probabilities derived by XC |xF+ ,H1:

Pr
(

LR(xC,l1, . . . , xC,ln)|H1
)

=

=
n

∏

i=1

Pr(xC,li ≡ xU,li |xF+,li ,H1) ∀xC,li ∈ XC,li . (4.3)

Hereafter we consider the likelihood ratio distributions with regard to all
the available loci altogether and for simplicity we refer to LR instead of
LR(xC,l1 , . . . , xC,ln).

4.2. The decision approach. To evaluate the System by a decision anal-
ysis we need to define the following quantities.

Decisions. Consider the possibility to choose among n identification Sys-
tems, differing for some characteristics, and devoted to cope with a specific
identification problem. The decision consists in choosing among the alterna-
tives D = {d1, . . . , dn} indicating the System to use.

Outcomes. The LR distributions, one for each identification hypothesis,
are the uncertain outcomes. They vary according to the System employed.

Consequences. Each possible value of the ou. Ftcome, LR = j or simply
LRj , jointly with a decision di produces a consequence Cij. For instance, dif-
ferent Systems may require different laboratory activities and costs, leading
to different consequences for the same LRj. Here costs related to different
decisions are considered negligible with respect to the matter implied in an
identification. For this reason consequences simply coincide with LRs.

Utility or loss. Consequences, conditionally to the hypothesis assumed
to hold, can be measured by using an utility, u(LRj |Hz), or a loss function
l(LRj |Hz), z ∈ {0, 1}. In the following we describe two aptitudes, relevant in
identification and concerning the evaluation of consequences. We define as
Problem-solver aptitude that of an actor who eminently appreciates Systems
strongly supporting the identification hypothesis assumed to hold. The same
value of utility is attributed to all the LRjs strongly supporting the holding
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hypothesis. On the opposite no utility is attributed to the other LRjs. The
proposed utility function, also represented in (Fig. 1), is

u(LRj |H0) =

{

1, if LRj ≤ τ0,
0, if LRj > τ0,

(4.4)

u(LRj |H1) =

{

0, if LRj < τ1,
1, if LRj ≥ τ1.

(4.5)

Fig 1. Utility functions under H0 a) and H1 b), related to a problem solver aptitude.

Alternatively, the Conservative aptitude is that of individuals mostly
alarmed by the possibility the System produces false identifications. Since
the pessimistic aptitude, consequences are measured by a loss function. The
proposal, also represented in (Fig. 2), is

l(LRj |H0) =

{

0, if LRj < τ1,
1, if LRj ≥ τ1,

(4.6)

l(LRj |H1) =

{

1, if LRj ≤ τ0,
0, if LRj > τ0.

(4.7)

To define the thresholds the most natural way is to use a single τ0 =
τ1 = τ = 1, i.e. the value which splits the LR support in two regions: one
favouring H0 (τ < 1), the other H1 (τ > 1). Other, perhaps more meaningful,
thresholds can be specified considering the behaviour of the actors involved
in the System evaluation.
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Fig 2. Loss functions under H0 a) and H1 b), related to a conservative aptitude.

More specifically, consider the Judge, the person required to decide about
the identification controversy: their prior probabilities on the identification
hypotheses, and the posteriors required to assume a decision about the iden-
tification, can be used to define the thresholds. A not informative, and possi-
bly fair, position for the Judge could be Pr(H0) = Pr(H1) = 0.5. Moreover
the Judge (and common law) could indicate a posterior probability leading
to an identification decision “beyond any reasonable doubt”. This implies,
by (3.1), the evaluation of τ0 and τ1 in (4.4 - 4.7). In Section 6 we con-
sider a real case making use of both the proposed approaches to define the
thresholds. Finally, two other parts have interest in assessing the value of the
System: those favouring identification (pro-id) and those against (con-id).
Their role suggests reasonable prior probabilities on H. The pro-ids believe
that C ≡ U , so that their prior probabilities could be close to Pr(H0) = 0
and Pr(H1) = 1. The con-ids strongly believe that C "≡ U , so their prior
probabilities could tentatively be Pr(H0) = 1 and Pr(H1) = 0.

The aim of a decision analysis is to compute the expected utility and/or
loss conditionally to each di through:

E(u|di) =
∑

z∈{0,1}

∑

j∈LR

u(LRj |Hz) · Pr(LRj|di,Hz) · Pr(Hz), (4.8)

E(l|di) =
∑

z∈{0,1}

∑

j∈LR

l(LRj |Hz) · Pr(LRj|di,Hz) · Pr(Hz), (4.9)

and to maximize (4.8) or to minimize (4.9) choosing among the available
decisions.

The expected loss and utility vary according to the parts since their dif-
ferent prior probabilities on H. The pro-ids actually consider only the case
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in which the LR distribution is expressed conditionally on H1 (Fig. 1b and
Fig. 2b). The con-ids only take account of the distribution of LR|H0, as
shown in Fig. 1a and Fig. 2a.

In this proposal the expected loss and utility evaluated for the parts are
easily interpretable. If we choose τ = 1 and the problem-solver attitude, the
expected utility amounts to the probability the System supports H1 (pro-
id), H0 (con-id) and average of them (Judge) when the hypotheses hold.
Conversely, if the conservative attitude is assumed, the expected loss is the
probability the System supports the hypotheses when they are not actually
true. Alternatively, if τ0 and τ1 are specified, the expected utility and loss
are, respectively, equal to the probability of false and correct identification
according to the decision rule on which τ0 and τ1 are chosen.

The proposed loss and utility functions are an extreme version of more
realistic and smooth alternatives, but they have the merit to produce ex-
pected values of the loss and utility functions interpretable in term of the
probability of some System’s features. Attempts to combine them inevitably
would obscure important characteristics of the System.

5. Computational strategies. The main computational issue consists
in obtaining the LR distributions for the loci considered altogether, when
H0 and H1 respectively hold. The task can be usefully pursued in two steps.
First, for each locus we need to efficiently derive the XC distribution con-
ditionally to each hypothesis following the population and the segregation
models appropriate to the case. By the ratio of the probabilities of each
possible state of XC , conditionally to H0 and H1, we can derive the pos-
sible values assumed by the LR. Since Pr(XC |H0) and Pr(XC |XF+ ,H1)
are obtained, the LR distributions, given H0 and H1, arise as a by-product.
The second step consists in deriving the LR distributions for each possible
arrangement of the genotypes on different loci.

5.1. LR single locus computations. The best way to derive the XC |F+,Hz

distributions is probably by using a Bayesian Network (BN), a representation
of a stochastic system by a Directed Acyclic Graph (DAG), as in Cowell et al
(1999). Stochastic nodes in the graph are opportunely linked by arrows;
marginal and conditional dependence-independence relationships can be de-
rived from the graph and exploited to efficiently obtain the marginal poste-
rior distributions of every unobserved random variables. All the probabilistic
information required to describe the joint distribution of the stochastic sys-
tem represented by a BN is carried on by the probability distribution of each
random variable conditionally to its incident nodes. In identification prob-
lems, the pedigree structure follows the BN requirements since the genotype
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probability distributions of the founders are expressed by a population model
and the genotype probability distributions of the other members of the fam-
ily, whose parents are explicitly represented, can be derived by the segre-
gation models and parameters as described in Section 2. The using of BN
for identification issues by DNA traits has been introduced by Dawid et al
(2002), Lauritzen and Sheehan (2002). Green and Mortera (2009) provide
details about the use of the BN in modeling the UAF population model.
Segregation allowing mutations has been implemented following the BN ap-
proach detailed in Vicard and Dawid (2004).

5.2. LR multi locus computations. The most immediate but näıve way to
obtain the LR distributions is to achieve the result by exact computations.
Making use of the single locus results, by a) in Section 4.1, the LR support
is derived applying (4.1). Similarly, exploiting independence among loci, we
obtained the LR distributions under H0 and H1 using (4.2) and (4.3), since
they depends on XC only.

Even if very simple, this procedure produces a number of LR values ex-
ponentially increasing according to the number of genotypes for every locus,
so that the LR sample space rapidly becomes intractable.

LR equivalence classes. Fortunately, not all the LRs induced by the pos-
sible genetic traces assumed by the Candidate are different. Consider for
instance the case provided in Appendix A, where a DNA donor posed on
the direct lineage n generations far from U , is attempting the identification
of a Candidate. In this case, by (A.1), the number of different values the LR
can assume in a locus results to be 3 or 6, depending if the donor in F+ is
homozygous or heterozygous, so it does not depend neither on k nor on n.
This implies that we are not required to evaluate the LR for all the possi-
ble different candidate’s profiles, but the LR distribution can be obtained
considering only the different LR values, summing up the probabilities of
the profiles producing the same LR and for this reason they constitute an
equivalence class. For identification cases differing from that one detailed in
the Appendix, these classes of equivalence could be found computationally,
by aggregating identical LR obtained for each locus.

LR quasi-equivalence classes. The strategy outlined above does not in-
troduce approximations of the LR distributions but it could not suffice to
downsize |LR| to a tractable dimension. A possibility to go further is rep-
resented by a form of approximation treating some profiles producing very
close LR values as belonging to the same equivalence class. The idea is
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twofold and deals with the issue of obtaining a reduced LR size and with
the evaluation of the LR distributions’ approximation accuracy.

The first issue is addressed for the locus i by collapsing the jth and j+1th
LR if

∆(i)(j) =
LR(li)(j+1) − LR(li)(j)

LR(li)(j)
< ε

algebraically or and decide what LR should be used instead of the two
neighboring LRs:

LR∗(li)(j) = f
(

LR(li)(j+1), LR(li)(j)
)

, (5.1)

then derive the LR∗ probabilities summing up all the probabilities of the
profiles included in what result to be a quasi-equivalence class.

Note that the value of ε is purely instrumental to downsize |LR|, but it
is not functionally related to a desired approximation accuracy. To achieve
this further goal consider that: if f(·, ·) = max

(

LR(li)(j+1), LR(li)(j)
)

, then:

Pr(LR∗
max

> τ) ≥ Pr(LR > τ) ∀τ.

If, alternatively, f(·, ·) = min
(

LR(li)(j+1), LR(li)(j)
)

:

Pr(LR∗
min

< τ) ≥ Pr(LR < τ) ∀τ.

This implies that, using both the approximations, we get:

Pr(LR∗
max < τ) ≤ Pr(LR < τ) ≤ Pr(LR∗

min < τ)

and
Pr(LR∗

min > τ) ≤ Pr(LR > τ) ≤ Pr(LR∗
max > τ),

i.e. the LR∗
min

and LR∗
max

distributions can be used as upper and lower bound
to determine an interval surrounding the probability of the required subset
of LR values. The approximation’s accuracy can possibly be measured by
the relative difference between the two approximations and the reduction in
complexity could be evaluated through the relative difference between the
size of LR and LR∗.

6. Case study. In this section we detail a case which seems to take ad-
vantage of the proposed method. Genetic data related to the case, obtained
with a 15 STR loci kit of primers, are in a supplement table available on
line. Here allelic frequencies referring to the Italian population, has been



14

provided by Brisighelli et al (2009) and mutation rates are taken from the
2008 Report of the American Association of Blood Banks4.

A man, B, would like to assess his father’s identity. He has serious reasons
to believe he is the son of AF (the Alleged Father), who died some years
ago. AF had a daughter (S) with his wife M , who is not the mother of B.

To follow our decision perspective, we define the following quantities.
Decisions. We decided to consider three Systems, so a decision among

the set D = {d1, d2, d3} has to be, hopefully, taken. The considered Systems
are here shown as a whole, but they had been actually proposed at successive
steps in time: at first we tried the less invasive choice; then more evidence
has been collected; finally we proposed a completely new third System.

The first two Systems (associated to decisions d1 and d2) deal with one
person, S, who wants to identify her half brother (HB). Their relatedness,
if proved, implies they share the father. The first System (d1) is the one
in which, as in Fig. 3a, B is the still unobserved candidate (in blue) and
the only person providing evidence (in green) is S. Decision d2 implies a
System differing from d1 only because the inclusion of M in the set F+

of the observed evidence, as in Fig. 3b. For both Systems the considered
hypotheses are:

- H0: B and S do not share recent relatives;
- H1: B is S’s half brother.

Note that these two Systems don’t require the exhumation of AF ’s body.
The third System (d3) deals with a motherless paternity case: B, who

provides DNA evidence, would like to identify AF , now the Candidate, as
his Father (F ), as in Fig. 3c. For this reason d3 allows for the possibility to
exhume AF and hypotheses are modified as follow:

- H0: AF and B do not share recent relatives;
- H1: AF is B’s father.

Outcomes. The LR distributions have been obtained using the quasi-
equivalence classes approach, as described in Section 5. Values for ε have
been iteratively employed to obtain a relative difference between the ap-
proximations for all the LR subsets of interest equal or less to 10−3.

Loss and Utility functions. We have used the loss and utility functions
defined in (4.4 - 4.7). Thresholds τ0 and τ1 are defined by means of the
Judge preferences: Pr(H0) = Pr(H1) = 0.5 are the prior probabilities and
the posteriors probabilities are equal to 0.9933, as a consequence, by (3.1),
τ0 = 0.00675 and τ1 = 148.254. Also τ = 1 is considered.

4http://www.aabb.org/sa/facilities/Documents/rtannrpt08.pdf
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Fig 3. Pedigree structures for the three Systems in the case study, under H1 (blue
indicates the unobserved candidate, green for the observed evidence).

Results are gathered in Tab. 1 and 2 in which Systems are evaluated
under three possible combinations of population and segregation models:
HW+ML, UAF+ML and HW+MMM, realizing a sensitivity analysis with
respect to the models’ assumptions. For every actor involved two values are
provided: the expected loss if the conservative aptitude is assumed and the
expected utility if the problem-solver aptitude holds. Obviously a satisfac-
tory System should have small expected loss and high expected utility values.
Furthermore, in order to give an idea of the LR sample space reduction, Tab.
1 shows the size of |LR∗| to be compared with |LR| = 1.6243 × 1029.

Results in Tab. 1 referring to the τ0 and τ1 thresholds, show that the three
Systems produce very small values of expected loss for all the actors involved.
Because these values can be interpreted as the probability to obtain LR
values which strongly support the hypothesis not supposed to hold leading
to a wrong decision, the conservative aptitude seems to be satisfied in all
the circumstances.

If instead we focus our attention on the values of the expected utility
for the baseline models, neither decision d1 nor d2 produce acceptable per-
formance irrespectively of the actor. Results are even worse if the more
realistic UAF and MMM models are introduced. On the opposite, looking
at the System d3, the value of the utility approaches its maximum, 1, for all
the considered population and segregation models. Obviously d3 implies the
exhumation of the AF ’s body which is unfortunately an invasive activity.
Finally, each system shows a substantial reduction of the LR size.

To conclude we consider the simplified setting in which τ0 = τ1 = τ = 1.
Now the expected loss corresponds to the probability to get LR values sup-
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d1 d2 d3

F+
S S & M B

C B B AF

U HB HB F

HW+ML

pro-id
E(u|di) 0.2018 0.4006 ! 1
E(l|di) 5.054 × 10−4 7.9052 × 10−4 ! 0

con-id
E(u|di) 0.1636 0.3094 0.9999954
E(l|di) 5.57 × 10−4 7.55 × 10−4 4.6 × 10−6

Judge
E(u|di) 0.1827 0.355 0.9999977
E(l|di) 5.312 × 10−4 7.7276 × 10−4 2.3 × 10−6

|LR∗| 394347 323315 56624

UAF+ML

pro-id
E(u|di) 0.1049 0.3747 ! 1
E(l|di) 3.4 × 10−4 7.62 × 10−4 ! 0

con-id
E(u|di) 0.0999 0.2917 0.9999939
E(l|di) 3.57 × 10−4 7.45 × 10−4 6.07 × 10−4

Judge
E(u|di) 0.1024 0.3332 0.999997
E(l|di) 3.49 × 10−4 7.54 × 10−4 3.04 × 10−4

|LR∗| 341337 554167 200615

HW+MMM

pro-id
E(u|di) 0.199 0.397 0.9982
E(l|di) 4.98 × 10−4 7.85 × 10−4 9 × 10−7

con-id
E(u|di) 0.1602 0.304 0.9996
E(l|di) 5.5 × 10−4 7.5 × 10−4 1.69 × 10−5

Judge
E(u|di) 0.1796 0.3505 0.9989
E(l|di) 5.24 × 10−4 7.675 × 10−4 8.9 × 10−6

|LR∗| 539301 576362 297709

Table 1

Results of the System evaluation for the case study τ0 = 0.00675 and τ1 = 148.254.

porting the hypothesis not assumed to hold, whereas the expected utility
represent the probability to obtain LR values supporting the assumed hy-
pothesis. As displayed in Tab. 2, losses implied by d1 and d2 reach high
figures that cannot be ignored and make even more important to switch to
decision d3, leaving unaltered the necessity of getting DNA evidence from
AF .

7. Discussion. In this paper we propose a methodology to deal with
the evaluation of probabilistic tools devoted to perform kinship analyses.

The goal is to provide information on the results deriving from the analysis
before the identification process is undertaken. The analysis moves consid-
ering the DNA evidence belonging to the individuals promoting the identi-
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d1 d2 d3

F+
S S & M B

C B B AF

U HB HB F

HW+ML

pro-id
E(u|di) 0.8846 0.9193 ! 1
E(l|di) 0.1154 0.0807 ! 0

con-id
E(u|di) 0.8895 0.9268 0.999995
E(l|di) 0.1105 0.0732 4.63 × 10−6

Judge
E(u|di) 0.8871 0.9231 0.999998
E(l|di) 0.1129 0.0769 2.32 × 10−6

UAF+ML

pro-id
E(u|di) 0.8622 0.916 ! 1
E(l|di) 0.1378 0.084 ! 0

con-id
E(u|di) 0.8635 0.9228 0.999994
E(l|di) 0.1365 0.0772 6.07 × 10−6

Judge
E(u|di) 0.8629 0.9194 0.999997
E(l|di) 0.1371 0.0806 3.04 × 10−6

HW+MMM

pro-id
E(u|di) 0.884 0.9185 0.999968
E(l|di) 0.116 0.0815 3.2 × 10−5

con-id
E(u|di) 0.889 0.9261 0.999906
E(l|di) 0.111 0.0739 9.4 × 10−5

Judge
E(u|di) 0.887 0.9223 0.999937
E(l|di) 0.113 0.0777 6.3 × 10−6

Table 2

Results of the system evaluation for the case study with τ = 1.

fication trial, but not that of the candidate. Obviously this procedure can
be performed without any additional costs nor laboratory work since it uses
only a subset of the data required for a kinship analysis.

This implies to perform the traditional LR computation only after the
identification System has been certified to achieve the characteristics re-
quired for the case of interest according to measures of loss and/or utility.

The main contribution of the paper is to acknowledge the large variety of
behaviours of kinship identification Systems related to specific cases. This
implies the need to use different amounts of information to reach satisfactory
and well-specified standards of performance. The traditional requirement
of additional observations for design variables, here becomes the request
of additional genetic profiles from family members and/or the increase of
the number of typed loci or an entirely different identification System to
achieve an acceptable level of expected utility or loss. In our opinion the
whole matter is relevant since, up to now, the capabilities of a proposed
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identification System have not been revealed to the parts, including those
called to express the final judgement on the identification trial. Moreover
the proposal represents a way to take into account the third criteria of
the sentence Daubert v. Merree Dow Pharmaceutical Inc. of the Supreme
Court5. Specifically, to determine whether science is reliable and admissible,
it wonders: “In the case of a particular technique, does it have a known error
rate and standards controlling the techniques operations?”

APPENDIX A: LR EQUIVALENCE CLASSES FOR IDENTIFICATION
ON THE DIRECT LINEAGE

Here we consider a case in which an individual, the DNA donor, is trying
to identify a candidate as the family member U posed n generations far on
the direct lineage. If n = 1 this is a motherless paternity case, if n = 2 it is the
case of a grandparent trying to identify a candidate as the nephew, and so on.
We illustrate how the number of different LRs arising in this circumstances,
is not equal to the number of possible genotypes the candidate can assume,
k(k + 1)/2, but it is a number independent of k and n, being k the number
of allele in the locus.

Let X = (ar, as) be the genotype of the donor and assume the population
alleles’ probabilities θ are known. For the sake of simplicity make use of the
HW and the ML models.

On the donor lineage, consider the probability distribution of the trans-
mitted allele. At first generation, n = 1, it can assume only two values, ar

and as, with probability 0.5. For n > 1, the probability to observe the ar or
as is equal to 0.5n (if they are IBD) plus the probability to come from the
no-donor lineage.

Let An be the distribution of the allele n generations after the donor had
provided X0 = (ar, as), then:

Pr
(

An = i|X0 = (ar, as)
)

=

{

(0.5)n + (1 − (0.5)n−1)θi, if i ∈ {r, s},
(1 − (0.5)n−1)θi, if i #∈ {r, s},

for n > 1.
Since the allele coming from the no-donor lineage still has a probabil-

ity ruled by the population parameters, the genotype probability along the

5Daubert v. Merrell Dow Pharmaceuticals Inc., 113 S. Ct. 2786, 1993.
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generations, Xn, Pr
(

Xn = (ai, aj)|X0 = (ar, as)
)

results to be:




















(0.5)n(θr + θs) + (1 − (0.5)n−1)2θrθs, if i = r, j = s,
(0.5)n(θj) + (1 − (0.5)n−1)2θrθj, if i = r, j "= s,
(0.5)n(θi) + (1 − (0.5)n−1)2θsθi, if i "= r, j = s,
(0.5)n(θr) + (1 − (0.5)n−1)θ2

r , if i = r, j = r,
(0.5)n(θs) + (1 − (0.5)n−1)θ2

s , if i = s, j = s,
(1 − (0.5)n−1)2θiθj, if i "= r, j "= s.

For this reason the LR =
Pr

(

Xn = (ai, aj)|X0 = (ar, as)
)

Pr
(

Xn = (ai, aj)|θ
) is:























(0.5)n+1 (θr + θs)

θrθs
+ (1 − (0.5)n−1), if i = r, j = s,

(0.5)n+1θ−1
r + (1 − (0.5)n−1), if i = r, j "= s,

(0.5)n+1θ−1
s + (1 − (0.5)n−1), if i "= r, j = s,

(0.5)nθ−1
r + (1 − (0.5)n−1), if i = r, j = r,

(0.5)nθ−1
s + (1 − (0.5)n−1), if i = s, j = s,

1 − (0.5)n−1, if i "= r, j "= s.

(A.1)

The last line shows that for descendant’s genotypes with alleles different
from ar and as the LR always assumes the value of 1 − (0.5)n−1. This cir-
cumstance reduces the LR sample space to 6 or 3 possible states, depending
if the donor is heterozygous or homozygous, respectively.
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