
© Copyr ight is held by the author(s) .

D I S I A W O R K I N G P A P E R
2 0 1 7 / 0 1

Algebra, coalgebra, and minimization

in polynomial differential equations

Michele Boreale

Algebra, coalgebra, and minimization
in polynomial differential equations∗

Michele Boreale
Università di Firenze

Abstract

We consider reasoning and minimization in systems of polynomial ordinary differential equa-
tions (odes). The ring of multivariate polynomials is employed as a syntax for denoting system
behaviours. We endow polynomials with a transition system structure based on the concept of Lie
derivative, thus inducing a notion ofL-bisimulation. Two states (variables) are provenL-bisimilar
if and only if they correspond to the same solution in the odes system. We then characterize L-
bisimilarity algebraically, in terms of certain ideals in the polynomial ring that are invariant under
Lie-derivation. This characterization allows us to develop a complete algorithm, based on build-
ing an ascending chain of ideals, for computing the largest L-bisimulation containing all valid
identities that are instances of a user-specified template. A specific largest L-bisimulation can be
used to build a reduced system of odes, equivalent to the original one, but minimal among all those
obtainable by linear aggregation of the original equations.

Keywords: Ordinary Differential Equations, Bisimulation, Minimization, Gröbner Bases.

1 Introduction

The past few years have witnessed a surge of interest in computational models based on ordinary dif-
ferential equations (odes), ranging from continuous-time Markov chains (e.g. [3]), to process descrip-
tion languages oriented to bio-chemical systems (e.g. [33, 4, 10]), to deterministic approximations of
stochastic systems (e.g. [15, 32]), and to hybrid systems (e.g. [30, 28, 23]).

From a computational point of view, our motivations to study odes arises from the following
problems.

1. Reasoning: provide methods to automatically prove and discover identities involving the system
variables.

2. Reduction: provide methods to automatically reduce, and possibly minimize, the number of
variables and equations of a system, in such a way that the reduced system retains all the relevant
information of the original one.

Reasoning may help an expert (a chemist, a biologist, an engineer) to prove or to disprove certain
system properties, even before actually solving, simulating or realizing the system. Often, the iden-
tities of interest take the form of conservation laws. For instance, chemical reactions often enjoy a

∗Extended version of [8]. Author’s address: Michele Boreale, Università di Firenze, Dipartimento di Statistica, Informat-
ica, Applicazioni (DiSIA) “G. Parenti”, Viale Morgagni 65, I-50134 Firenze, Italy. E-mail: michele.boreale@unifi.it.

1

mass conservation law, stating that the sum of the concentrations of two or more chemical species, is
a constant. More generally, one would like tools to automatically discover all laws of a given form.
Pragmatically, before actually solving or simulating a given system, it can be critical being able to
reduce the system to a size that can be handled by a solver or a simulator.

Our goal is showing that these issues can be dealt with by a mix of algebraic and coalgebraic
techniques. We will consider initial value problems, specified by a system of odes of the form ẋi =

fi(x1, ..., xN), for i = 1, ...,N, plus initial conditions. The functions fis are called drifts; here we will
focus on the case where the drifts are multivariate polynomials in the variables x1, .., xN . Practically,
the majority of functions found in applications is in, or can be encoded into this format (possibly under
restrictions on the initial conditions), including exponential, trigonometric, logarithmic and rational
functions.

A more detailed account of our work follows. We introduce the ring of multivariate polynomials as
a syntax for denoting the behaviours induced by the given initial value problem (Section 2). In other
words, a behaviour is any polynomial combination of the individual components xi(t) (i = 1, ..,N)
of the (unique) system solution. We then endow the polynomial ring with a transition system, based
on a purely syntactic notion of Lie derivative (Section 3). This structure naturally induces a notion
of bisimulation over polynomials, L-bisimilarity, that is in agreement with the underlying ode’ s. In
particular, any two variables xi and x j are L-bisimilar if and only the corresponding solutions are the
same, xi(t) = x j(t) (this generalizes to polynomial behaviours as expected). This way, one can prove
identities between two behaviours, for instance conservation laws, by exhibiting bisimulations con-
taining the given pair . The resulting proof method is greatly enhanced by introducing a polynomial
version of the up to technique of [27]. In order to turn this method into a fully automated proof pro-
cedure, we first characterize L-bisimulation algebraically, in terms of certain ideals in the polynomial
ring that are invariant under Lie-derivation (Section 4). This characterization leads to an algorithm
that, given a user-specified template, returns the set of all its instances that are valid identities in the
system (Section 5). One may use this algorithm, for instance, to discover all the conservation laws of
the system involving terms up to a given degree. The algorithm implies building an ascending chain
of ideals until stabilization, and relies on a few basic concepts from Algebraic Geometry, notably
Gröbner bases [17]. The output of the algorithm is in turn essential to build a reduced system of odes,
equivalent to the original one, but featuring a minimal number of equations and variables, in the class
of systems that can be obtained by linear aggregation from the original one (Section 6). We then il-
lustrate the results of some simple experiments we have conducted using a prototype implementation
(in Python) of our algorithms (Section 7). Our approach is mostly related to some recent work on
equivalences for odes by Cardelli et al. [11] and to work in the area of hybrid systems. We discuss this
and other related work, as well as some possible directions for future work, in the concluding section
(Section 8). For the sake of readability, a few proofs and some technical material have been confined
in a separate appendix (Appendix A); a few straightforward proofs have been omitted right away from
the present version.

To sum up, we give the following contributions.

(1) A complete bisimulation-based proof technique to reason on the polynomial behaviours induced
by a system of odes.

(2) An algorithm to find all the valid polynomial identities induced by the given system and fitting
a user-specified template.

(3) An algorithm to find a reduced, equivalent system that is minimal in the class of all linear
aggregations of the original system.

2

2 Preliminaries

Let us fix an integer N ≥ 1 and a set of N distinct variables x1, ..., xN . We will denote by x the
column1 vector (x1, ..., xN)T . We let R[x] denote the set of multivariate polynomials in the variables
x1, ..., xN with coefficients in R, and let p, q range over it. Here we regard polynomials as syntactic
objects. Given an integer d ≥ 0, by Rd[x] we denote the set of polynomials of degree ≤ d. As an
example, p = 2xy2 + (1/5)wz + yz + 1 is a polynomial of degree deg(p) = 3, that is p ∈ R3[x, y, z,w],
with monomials xy2, wz, yz and 1. Depending on the context, with a slight abuse of notation it may
be convenient to let a polynomial denote the induced function RN → R, defined as expected. In
particular, xi can be seen as denoting the projection on the i-th coordinate.

A (polynomial) vector field is a vector of N polynomials, F = (f1, ..., fN)T , seen as a function
F : RN → RN . A vector field F and an initial condition x0 ∈ R

N together define an initial value
problem Φ = (F, x0), often written in the following form

Φ :
{

ẋ(t) = F(x(t))
x(0) = x0 .

(1)

The functions fi in F are called drifts in this context. A solution to this problem is a differentiable
function x(t) : D→ RN , for some nonempty open interval D ⊆ R containing 0, which fulfills the above
two equations, that is: d

dt x(t) = F(x(t)) for each t ∈ D and x(0) = x0. By the Picard-Lindelöf theorem
[2], there exists a nonempty open interval D containing 0, over which there is a unique solution, say
x(t) = (x1(t), ..., xN(t))T , to the problem. In our case, as F is infinitely often differentiable, the solution
is seen to be analytic in D: each xi(t) admits a Taylor series expansion in a neighborhood of 0. For
definiteness, we will take the domain of definition D of x(t) to be the largest symmetric open interval
where the Taylor expansion from 0 of each of the xi(t) converges (possibly D = R). The resulting
vector function of t, x(t), is called the time trajectory of the system.

Given a differentiable function g : E → R, for some open set E ⊆ RN , the Lie derivative of g
along F is the function E → R defined as

LF(g) 4
= 〈∇g, F〉 =

N∑
i=1

(
∂g
∂xi
· fi) .

The Lie derivative of the sum h + g and product h · g functions obey the familiar rules

LF(h + g) = LF(h) +LF(g) (2)

LF(h · g) = h · LF(g) +LF(h) · g . (3)

Note that LF(xi) = fi. Moreover if p ∈ Rd[x] then LF(p) ∈ Rd+d′[x], for some integer d′ ≥ 0 that
depends on d and on F. This allows us to view the Lie derivative of polynomials along a polynomial
field F as a purely syntactic mechanism, that is as a function LF : R[x] → R[x] that does not assume
anything about the solution of (1). Informally, we can view p as a program, and taking Lie derivative
of p can be interpreted as unfolding the definitions of the variables xi’s, according to the equations
in (1) and to the formal rules for product and sum derivation, (2) and (3). We will pursue this view
systematically in Section 3.

Example 1 Consider N = 4, x = (x, y, z,w)T and the set of polynomials R[x]. The vector field
F = (xz + z, yw + z, z,w)T and the initial condition x0 = (0, 0, 1, 1)T together define an initial value

1Vector means column vector, unless otherwise specified.

3

problem (with no particular physical meaning) Φ = (F, x0). This problem can be equivalently written
in the form 

ẋ(t) = x(t)z(t) + z(t)
ẏ(t) = y(t)w(t) + z(t)
ż(t) = z(t)

ẇ(t) = w(t)
x(0) = x0 = (0, 0, 1, 1)T .

(4)

As an example of Lie derivative, if p = 2xy2 +wz, we haveLF(p) = 4wxy2 +2wz+2xy2z+4xyz+2y2z.

The connection between time trajectories, polynomials and Lie derivatives can be summed up as
follows. For any polynomial p ∈ R[x], the function p(x(t)) : D → R, obtained by composing p as
a function with the time trajectory x(t), is analytic: we let p(t) denote the extension of this function
over the largest symmetric open interval of convergence (possibly coinciding with R) of its Taylor
expansion from 0. We will call p(t) the polynomial behaviour induced by p and by the initial value
problem (1). The connection between Lie derivatives of p along F and the initial value problem (1) is
given by the following equations, which can be readily checked. Here and in the sequel, we let p(x0)
denote the real number obtained by evaluating p at x0.

p(t)|t=0 = p(x0) (5)
d
dt

p(t) = (LF(p))(t) . (6)

More generally, defining inductively L(0)
F (p) 4= p and L(j+1)

F (p) 4= LF(L j
F(p)), we have the following

equation for the j-th derivative of p(t) (j = 0, 1, ...)

d j

dt j p(t) = (L(j)
F (p))(t) . (7)

In the sequel, we shall often abbreviate L(j)
F (p) as p(j), and shall omit the subscript F from LF when

clear from the context.

3 Coalgebraic semantics of polynomial odes

In this section we show how to endow the polynomial ring with a transition relation structure, hence
giving rise to coalgebra. Bisimilarity in this coalgebra will correspond to equality between polynomial
behaviours.

We recall that a (Moore) coalgebra (see e.g. [26]) with outputs in a set O is a triple C = (S , δ, o)
where S is a set of states, δ : S → S is a transition function, and o : S → O is an output function. A
bisimulation in C is a binary relation R ⊆ S × S such that whenever s R t then: (a) o(s) = o(t), and (b)
δ(s) R δ(t). It is an (easy) consequence of the general theory of bisimulation that a largest bisimulation
over S , called bisimilarity and denoted by ∼, exists, is the union of all bisimulation relations, and is
an equivalence relation over S .

Given an initial value problem Φ = (F, x0) of the form (1), the triple

CΦ
4
= (R[x],LF , o)

forms a coalgebra with outputs in R, where: (1) R[x] is the set of states; (2) LF acts as the transition
function; and (3) o defined as o(p) 4= p(x0) is the output function. Note that this definition of coalgebra

4

is merely syntactic, and does not presuppose anything about the solution of the given initial value
problem. When the standard definition of bisimulation over coalgebras is instantiated to CΦ, it yields
the following.

Definition 1 (L-bisimulation ∼Φ) Let Φ be an initial value problem. A binary relation R ⊆ R[x] ×
R[x] is a L-bisimulation if, whenever p R q then: (a) p(x0) = q(x0), and (b) L(p) RL(q). The largest
L-bisimulation over R[x] is denoted by ∼Φ.

We now introduce a new coalgebra with outputs in R. Let A denote the family of real valued
functions f such that f is analytic at 0 and f ’s domain of definition coincides with the open interval
of convergence of its Taylor series (nonempty, centered at 0, possibly coinciding with R)2. We define
the coalgebra of analytic functions as

Can
4
= (A, (·)′, oan)

where (f)′ =
d f
dt is the standard derivative, and ofin(f) 4= f (0) is the output function. We recall that a

morphism µ between two coalgebras with outputs in the same set, µ : C1 → C2, is a function from
states to states that preserves transitions (µ(δ1(s)) = δ2(µ(s))) and outputs (o1(s) = o2(µ(s))). It is
a standard (and easy) result of coalgebra that a morphism maps bisimilar states into bisimilar states:
s ∼1 s′ implies µ(s) ∼2 µ(s′).

The coalgebra Can has a special status, in that, given any coalgebra C with outputs in R, if there is
a morphism from C to Can, this morphism is guaranteed to be unique3. For our purposes, it is enough
to focus on C = CΦ. We define the function µ : R[x]→ A as

µ(p) 4
= p(t) .

Theorem 1 (coinduction) µ is the unique morphism from CΦ to Can. Moreover, the following coin-
duction principle is valid: p ∼Φ q in CΦ if and only if p(t) = q(t) inA.

Proof The function µ given above is well defined, because p(t) ∈ A, and is a morphism: for output
and transition preservation, use (5) and (6), respectively. By the above recalled standard result in
coalgebra, then p ∼Φ q implies p(t) ∼ q(t) in Can. Assume now that ν is a morphism from CΦ to Can.
From the definition of morphism and bisimulation, it is readily checked that for each p, µ(p) ∼ ν(p)
in Can. Finally, we check that ∼ in Can coincides with equality: indeed, if two functions are bisimilar
in A, then they have the same Taylor coefficients (this is shown by induction on the order of the
derivatives, relying on the fact that f ∼ g means f (0) = g(0) and f ′ ∼ g′); the vice-versa is obvious.
This completes the proof of both parts of the statement. 2

Theorem 1 permits proving polynomial relations among components xi(t) of x(t), say that p(t) =

q(t), by coinduction, that is, by exhibiting a suitable L-bisimulation relating the polynomials p and q.

Example 2 For N = 2, consider the vector field F = (x2,−x1)T with the initial value x0 = (0, 1)T .
The binary relation R ⊆ R[x1, x2] × R[x1, x2] defined thus

R = { (0, 0), (x2
1 + x2

2, 1) }

is easily checked to be anL-bisimulation. Thus we have proved the polynomial relation x2
1(t)+ x2

2(t) =

1. Note that the unique solution to the given initial value problem is the pair of functions x(t) =

(sin(t), cos(t))T . This way we have proven the familiar trigonometric identity sin(t)2 + cos(t)2 = 1.
2Equivalently,A is the set of power series f (t) =

∑
j≥0 a jt j with a positive radius of convergence.

3Existence of a morphism is not guaranteed, though. In this sense, Can is not final.

5

This proof method can be greatly enhanced by a so called L-bisimulation up to technique, in the
spirit of [27].

Definition 2 (L-bisimulation up to) Let R ⊆ R[x] × R[x] be a binary relation. Consider the binary
relation R̂ defined by: p R̂ q iff there are m ≥ 0 and polynomials hi, pi, qi (i = 1, ...,m) such that:
p =

∑m
i=1 hi pi and q =

∑m
i=1 hiqi and pi R qi, for i = 1, ...,m.

A relation R ⊆ R[x] × R[x] is a L-bisimulation up to if, whenever p R q then: (a) p(x0) = q(x0),
and (b) L(p) R̂L(q).

Note that, from the definition, for each relation R we have R ⊆ R̂.

Lemma 1 Let R be an L-bisimulation up to. Then R̂ is an L-bisimulation, consequently R ⊆∼Φ.

Proof In order to check that R̂ is an L-bisimulation, assume that p R̂ q, that is p =
∑m

i=1 hi pi and
q =

∑m
i=1 hiqi, for some hi, pi, qi (i = 1, ...,m) as specified by Definition 2. It is immediate to check

that p(x0) = q(x0), which proves condition (a) of the definition of L-bisimulation. Furthermore, for
each i = 1, ..,m, we have by assumption thatL(pi) R̂L(qi). That is, for suitable gi j’s and ri j’s, we have

L(pi) =
∑

j

gi jri j L(qi) =
∑

j

gi jsi j ri j R si j .

Recalling the rules for the Lie derivative, (2) and (3), we have

L(p) =
∑

i

hiL(pi) +L(hi)pi =
∑

i

hi

∑
j

gi jri j +L(hi)pi =
∑

i

∑
j

higi jri j +
∑

i

L(hi)pi

R̂
∑

i

∑
j

higi jsi j +
∑

i

L(hi)qi =
∑

i

hi

∑
j

gi jsi j +
∑

i

L(hi)qi =
∑

i

hiL(qi) +L(hi)qi

= L(q) .

This proves condition (b) of the definition of L-bisimulation. 2

Example 3 Consider the initial value problem of Example 1 and the relation defined below

R = { (xz j, yw j) , (z j,w j) : j ≥ 0} .

It is easy to check that R is an L-bisimulation up to. As an example, let us check condition (b) for a
pair (xz j, yw j):

L(xz j) = (xz + z)z j + jxz j = (xz j+1 + jxz j + zz j) R̂ (yw j+1 + jyw j + zw j) = (yw + z)w j + jyw j = L(yw j) .

This proves that x(t) = y(t) and that z(t) = w(t).

In the next two sections we will prove that this technique can be fully automated by resorting to the
concept of ideal in a polynomial ring.

4 Algebraic characterization of L-bisimilarity

We first review the notion of polynomial ideal from Algebraic Geometry, referring the reader to e.g.
[17] for a comprehensive treatment. A set of polynomials I ⊆ R[x] is an ideal if: (1) 0 ∈ I, (2) I is

6

closed under sum +, (3) I is absorbing under product ·, that is p ∈ I implies h · p ∈ I for each h ∈ R[x].
Given a set of polynomials S , the ideal generated by S , denoted by

〈
S

〉
, is defined as

m∑
j=1

h j p j : m ≥ 0, h j ∈ R[x] and p j ∈ S , for j = 1, ...,m

 . (8)

The polynomial coefficients h j in the above definition are called multipliers. It can be proven that〈
S

〉
is the smallest ideal containing S , which implies that

〈 〈
S

〉 〉
=

〈
S

〉
. Any set S such that〈

S
〉

= I is called a basis of I. Every ideal in the polynomial ring R[x] is finitely generated, that is
has a finite basis (an instance of Hilbert’s basis theorem).

L-bisimulations can be connected to certain types of ideals. This connection relies on Lie deriva-
tives. First, we define the Lie derivative of any set S ⊆ R[x] as follows

L(S) 4
= {L(p) : p ∈ S } .

We say that S is a pre-fixpoint of L if L(S) ⊆ S . L-bisimulations can be characterized as particular
pre-fixpoints of L that are also ideals, called invariants.

Definition 3 (invariant ideals) Let Φ = (F, x0). An ideal I is a Φ-invariant if: (a) p(x0) = 0 for each
p ∈ I, and (b) I is a pre-fixpoint of LF .

We will drop the Φ- from Φ-invariant whenever this is clear from the context. The following
definition and lemma provide the link between invariants and L-bisimulation.

Definition 4 (kernel) The kernel of a binary relation R is ker(R) 4= {p − q : p R q}.

Lemma 2 Let R be a binary relation. If R is an L-bisimulation then
〈

ker(R)
〉

is an invariant.
Conversely, given an invariant I, then R = {(p, q) : p − q ∈ I} is an L-bisimulation.

Consequently, proving that p ∼Φ q is equivalent to exhibiting an invariant I such that p − q ∈ I.

Example 4 Consider the initial value problem of Example 3. Let I =
〈
{x − y, z − w}

〉
. Let us check

that I is an invariant. Let p = h1(x − y) + h2(z − w) be a generic element of I. Clearly p(x0) = 0, thus
condition (a) is satisfied. Concerning (b), we consider the two summands separately:

L(h1(x − y)) = L(h1)(x − y) + h1L(x − y)
= L(h1)(x − y) + h1(xz + z − (yz + w))
=

(
L(h1) + h1z

)
(x − y) + h1(z − w)

∈ I

L(h2(z − w)) = L(h1)(z − w) + h1L(z − w)
= L(h1)(z − w) + h1(z − w)
=

(
L(h1) + h1

)
(z − w)

∈ I .

Consequently, L(p) = L(h1(x − y)) +L(h2(z − w)) ∈ I.

A more general problem than equivalence checking is finding all valid polynomial equations of a
given form. We will illustrate an algorithm to this purpose in the next section.

7

The following result sums up the different characterization of L-bisimilarity ∼Φ. In what fol-
lows, we will denote the constant zero function in A simply by 0 and consider the following set of
polynomials.

ZΦ
4
= {p : p(t) is identically 0 } .

The following result also proves thatZΦ is the largest Φ-invariant.

Theorem 2 (L-bisimilarity via ideals) We have the following characterizations of L-bisimilarity.
For any pair of polynomials p and q:

p ∼Φ q iff p − q ∈ ker(∼Φ) (9)
= ZΦ (10)
=

{
p : p(j)(x0) = 0 for each j ≥ 0

}
(11)

=
⋃
{I : I is a Φ-invariant } . (12)

5 Computing invariants

By Theorem 2, proving p ∼Φ q means finding an invariant I such that p−q ∈ I ⊆ ZΦ. More generally,
we focus here on the problem of finding invariants that include a user-specified set of polynomials. In
the sequel, we will make use of the following two basic facts about ideals, for whose proof we refer
the reader to [17].

1. Any infinite ascending chain of ideals in a polynomial ring, I0 ⊆ I1 ⊆ · · · , stabilizes at some
finite k. That is, there is k ≥ 0 such that Ik = Ik+ j for each j ≥ 0.

2. The ideal membership problem, that is, deciding whether p ∈ I, given p and a finite set of S of
generators (such that I =

〈
S

〉
), is decidable (provided the coefficients used in p and in S can

be finitely represented). The ideal membership will be further discussed later on in the section.

The main idea is introduced by the naive algorithm presented below.

5.1 A naive algorithm

Suppose we want to decide whether p ∈ ZΦ. It is quite easy to devise an algorithm that computes the
smallest invariant containing p, or returns ‘no’ in case no such invariant exists, i.e. in case p < ZΦ.
Consider the successive Lie derivatives of p, p(j) = L(j)(p) for j = 0, 1, For each j ≥ 0, let
I j
4
=

〈
{p(0), ..., p(j)}

〉
. Let m be the least integer such that either

(a) p(m)(x0) , 0, or

(b) Im = Im+1.

If (a) occurs, then p < ZΦ, so we return ‘no’ (Theorem 2(11)); if (b) occurs, then Im is the least
invariant containing p. Note that the integer m is well defined: I0 ⊆ I1 ⊆ I2 ⊆ · · · forms an infinite
ascending chain of ideals, which must stabilize in a finite number of steps (fact 1 at the beginning of
the section).

8

Checking condition (b) amounts to deciding if p(m+1) ∈ Im. This is an instance of the ideal mem-
bership problem, which can be solved effectively. Generally speaking, given a polynomial p and finite
set of polynomials S , deciding the ideal membership p ∈ I =

〈
S

〉
can be accomplished by first

transforming S into a Gröbner basis G for I (via, e.g. the Buchberger’s algorithm), then computing
r, the residual of p modulo G (via a sort generalised division of p by G): one has that p ∈ I if and
only if r = 0 (again, this procedure can be carried out effectively only if the coefficients involved in
p and S are finitely representable; in practice, one often confines to rational coefficients). We refer
the reader to [17] for further details on the ideal membership problem. Known procedures to compute
Gröbner bases have exponential worst-case time complexity, although may perform reasonably well
in some concrete cases. One should in any case invoke such procedures parsimoniously. Here is a
small example to illustrate the above outlined algorithm.

Example 5 Consider again the initial value problem of Example 3. Let p = x − y. With the help of a
computer algebra system, we can easily check the following.

• p(0) = p and p(0)(x0) = 0;

• p(1) = xz − yw, p(1)(x0) = 0 and p(1) < I0 =
〈
{p(0)}

〉
;

• p(2) = −w2y − wy − wz + xz2 + xz + z2, p(2)(x0) = 0 and p(2) < I1 =
〈
{p(0), p(1)}

〉
• p(3) = −w3y − 3w2y − w2z − wy − 3wz + xz3 + 3xz2 + xz + z3 + 3z2, p(3)(x0) = 0 and finally4 p(3) ∈ I2 =〈
{p(0), p(1), p(2)}

〉
.

Hence I2 is the least invariant containing p = x − y, thus proving that x − y ∈ ZΦ.

We will introduce below a more general algorithm, which can also deal with (infinite) sets of
user-specified polynomials. First, we need to introduce the concept of template.

5.2 Templates

Polynomial templates have been introduced by Sankaranarayanan, Sipma and Manna in [28] as a
means to compactly specify sets of polynomials. Fix a tuple of n ≥ 1 of distinct parameters, say
a = (a1, ..., an), disjoint from x. Let Lin(a), ranged over by `, be the set of linear expressions with
coefficients in R and variables in a; e.g. ` = 5a1 + 42a2 − 3a3 is one such expression5. A template is
a polynomial in Lin(a)[x], that is, a polynomial with linear expressions as coefficients; we let π range
over templates. For example, the following is a template:

π = (5a1 + (3/4)a3)xy2 + (7a1 + (1/5)a2)xz + (a2 + 42a3) .

Given a vector v = (r1, ..., rn)T ∈ Rn, we will let `[v] ∈ R denote the result of replacing each
parameter ai with ri, and evaluating the resulting expression; we will let π[v] ∈ R[x] denote the
polynomial obtained by replacing each ` with `[v] in π. Given a set S ⊆ Rn, we let π[S] denote the set
{π[v] : v ∈ S } ⊆ R[x].

The (formal) Lie derivative of π is defined as expected, once linear expressions are treated as
constants; note that L(π) is still a template. It is easy to see that the following property is true: for
each π and v, one has L(π[v]) = L(π)[v]. This property extends as expected to the j-th Lie derivative
(j ≥ 0)

L(j)(π[v]) = L(j)(π)[v] . (13)
4Indeed, a Gröbner basis for I2 is G = {x − y, yz − wy, z2 − wz}, and p(3) = (z3 + 3z2 + z)(x − y) + (w2 + wz + 3w + z2 +

3z + 1)(yz − wy) + (w + z + 3)(z2 − wz).
5Differently from Sankaranarayanan et al. we do not allow linear expressions with a constant term, such as 2+5a1+42a2−

3a3. This minor syntactic restriction does not practically affect the expressiveness of the resulting polynomial templates.

9

5.3 A double chain algorithm

We present an algorithm that, given a template πwith n parameters, returns a pair (V, J), where V ⊆ Rn

is such that π[Rn]∩ZΦ = π[V], and J is the smallest invariant that includes π[V], possibly J = {0}. We
first give a purely mathematical description of the algorithm, postponing its effective representation
to the next subsection. The algorithm is based on building two chains of sets, a descending chain
of vector spaces and an (eventually) ascending chain of ideals. The ideal chain is used to detect the
stabilization of the sequence. For each i ≥ 0, consider the sets

Vi
4
= {v ∈ Rn : π(j)[v](x0) = 0 for j = 0, ..., i } (14)

Ji
4
=

〈 i⋃
j=1

π(j)[Vi]
〉
. (15)

It is easy to check that each Vi ⊆ R
n is a vector space over R of dimension ≤ n. Now let m ≥ 0 be the

least integer such that the following conditions are both true:

Vm+1 = Vm (16)

Jm+1 = Jm . (17)

The algorithm returns (Vm, Jm). Note that the integer m is well defined: indeed, V0 ⊇ V1 ⊇ · · · forms
an infinite descending chain of finite-dimensional vector spaces, which must stabilize in finitely many
steps. In other words, we can consider the least m′ such that Vm′ = Vm′+k for each k ≥ 1. Then
Jm′ ⊆ Jm′+1 ⊆ · · · forms an infinite ascending chain of ideals, which must stabilize at some m ≥ m′.
Therefore there must be some index m such that (16) and (17) are both satisfied, and we choose the
least such m.

The next theorem states the correctness and relative completeness of this abstract algorithm. Infor-
mally, the algorithm will output the largest space Vm such that π[Vm] ⊆ ZΦ and the smallest invariant
Jm witnessing this inclusion. Note that, while typically the user will be interested in π[Vm], Jm as
well may contain useful information, such as higher order, nonlinear conservation laws. We need a
technical lemma.

Lemma 3 Let Vm, Jm be the sets returned by the algorithm. Then for each j ≥ 1, one has Vm = Vm+ j

and Jm = Jm+ j.

Theorem 3 (correctness and relative completeness) Let Vm, Jm be the sets returned by the algo-
rithm for a polynomial template π.

(a) π[Vm] = ZΦ ∩ π[Rn];

(b) Jm is the smallest invariant containing π[Vm].

Proof Concerning part (a), we first note that π[v] ∈ ZΦ ∩ π[Rn] means (π[v])(j)(x0) = π(j)[v](x0) = 0
for each j ≥ 0 (Theorem 2(11)), which, by definition, implies v ∈ V j for each j ≥ 0, hence v ∈ Vm.
Conversely, if v ∈ Vm = Vm+1 = Vm+2 = · · · (here we are using Lemma 3), then by definition
(π[v])(j)(x0) = π(j)[v](x0) = 0 for each j ≥ 0, which implies that π[v] ∈ ZΦ (again Theorem 2(11)).
Note that in proving both inclusions we have used property (13).

Concerning part (b), it is enough to prove that: (1) Jm is an invariant, (2) Jm ⊇ ZΦ ∩ π[Rn], and
(3) for any invariant I such that ZΦ ∩ π[Rn] ⊆ I, we have that Jm ⊆ I. We first prove (1), that Jm is

10

an invariant. Indeed, for each v ∈ Vm and each j = 0, ...,m − 1, we have L(π(j)[v]) = π(j+1)[v] ∈ Jm by
definition, while for j = m, since v ∈ Vm = Vm+1, we have L(π(m)[v]) = π(m+1)[v] ∈ Jm+1 = Jm (note
that in both cases we have used property (13)). Concerning (2), note that Jm ⊇ π[Vm] = ZΦ ∩ π[Rn]
by virtue of part (a). Concerning (3), consider any invariant I ⊇ ZΦ ∩ π[Rn]. We show by induction
on j = 0, 1, ... that for each v ∈ Vm, π(j)[v] ∈ I; this will imply the wanted statement. Indeed,
π(0)[v] = π[v] ∈ ZΦ ∩ π[Rn], as π[Vm] ⊆ ZΦ by (a). Assuming now that π(j)[v] ∈ I, by invariance of
I we have π(j+1)[v] = L(π(j)[v]) ∈ I (again, we have used here property (13)). 2

According to Theorem 3(a), given a template π and v ∈ Rn, checking if π[v] ∈ π[Vm] is equivalent
to checking if v ∈ Vm, which can be effectively done knowing a basis Bm of Vm. We show how to
effectively compute such a basis in the following.

5.4 Effective representation

For i = 0, 1, ..., we have to give effective ways to:

(i) represent the sets Vi, Ji in (14) and (15); and

(ii) check the termination conditions (16) and (17).

It is quite easy to address (i) and (ii) in the case of the vector spaces Vi. For each i, consider the linear
expression π(i)(x0). By factoring out the parameters a1, ..., an in this expression, we can write, for a
suitable (row) vector of coefficients ti = (ti1, ..., tin) ∈ R1×n:

π(i)(x0) = ti1 · a1 + · · · + tin · an

The condition on v ∈ Rn, π(i)[v](x0) = 0, can then be translated into the linear constraint on v
ti · v = 0 . (18)

Letting Ti ∈ R
i×n denote the matrix obtained by stacking the rows t1, ..., ti on above the other, we see

that Vi is the right null space of Ti. That is (here, 0i denotes the null vector in Ri):

Vi = {v ∈ Rn : Tiv = 0i } .

Checking whether Vi = Vi+1 or not amounts then to checking whether the vector ti+1 is or not linearly
dependent from the rows in Ti, which can be accomplished by standard and efficient linear algebraic
techniques. In practice, the linear constraints (18) can be resolved and propagated via parameter
elimination6 incrementally, as soon as they are generated following computation of the derivatives
π(i). Concerning the representation of the ideals Ji, we will use the following lemma7.

Lemma 4 Let V ⊆ Rn be a vector space with B as a basis, and π1, ..., πk be templates. Then
〈
∪k

j=1
π j[V]

〉
=

〈
∪k

j=1 π j[B]
〉
.

Now let Bi be a finite basis of Vi, which can be easily built from the matrix Ti. By the previous
lemma, ∪i

j=1π
(j)[Bi] is a finite set of generators for Ji: this solves the representation problem. Concern-

ing the termination condition, we note that, after checking that actually Vi = Vi+1, checking Ji = Ji+1
reduces to checking that

π(i+1)[Bi] ⊆
〈
∪i

j=1 π
(j)[Bi]

〉
= Ji . (19)

6E.g., if for π = a1 x + a2y + a3 x + a4w and x0 = (0, 0, 1, 1)T , π[v](x0) = 0 is resolved by the substitution [a3 7→ −a4].
7The restriction that linear expressions in templates do not contain constant terms is crucial here.

11

To check this inclusion, one can apply standard computer algebra techniques. For example, one
can check if π(i+1)[b] ∈ Ji for each b ∈ Bi, thus solving |Bi| ideal membership problems, for one and
the same ideal Ji. As already discussed, this presupposes the computation of a Gröbner basis for Ji,
a potentially expensive operation. One advantage of the above algorithm, over methods proposed in
program analysis with termination conditions based on testing ideal membership (e.g. [25]), is that
(19)is not checked at every iteration, but only when Vi+1 = Vi (the latter a relatively inexpensive
check). In the Appendix (Subsection A.2), we also discuss a sufficient condition which does not
involve Gröbner bases, but leads to an incomplete algorithm.

Example 6 Consider the initial value problem of Example 1 and the template π = a1x+a2y+a3z+a4w.
We run the double chain algorithm with this system and template as inputs. In what follows, v =
(v1, v2, v3, v4)T will denote a generic vector in R4. Recall that x = (x, y, z,w)T and x0 = (0, 0, 1, 1)T .

• For each v ∈ R4: π(0)[v](x0) = (v1x + v2y + v3z + v4w)(x0) = 0 if and only if v ∈ V0
4
= {v : v3 = −v4}.

• For each v ∈ V0: π(1)[v](x0) = (v1xz + v1z + v2wy + v2z + v4w − v4z)(x0) = 0 if and only if v ∈ V1
4
= {v ∈

V0 : v1 = −v2}.

• For each v ∈ V1: π(2)[v](x0) = (v2w2y + v2wy + v2wz− v2xz2 − v2xz− v2z2 + v4w− v4z)(x0) = 0 if and only
if v ∈ V2

4
= V1.

Being V2 = V1, we also check if J2 = J1. A basis of V1 is B1 = {b1, b2} with b1 = (−1, 1, 0, 0)T and
b2 = (0, 0,−1, 1)T . According to (19), we have therefore to check if, for ` = 1, 2:

π(2)[b`] ∈ J1
4
=

〈
{π(0)[b1], π(0)[b2], π(1)[b1], π(1)[b2]}

〉
.

With the help of a computer algebra system, one computes a Gröbner basis for J1 as G1 = {x− y, z−w}.
Then one can reduce π(2)[b1] = w2y + wy + wz − xz2 − xz − z2 modulo G1 and obtain π(2)[b1] = h1(x −
y) + h2(z − w), with h1 = −z2 − z and h2 = −wy − yz − y − z, thus proving that π(2)[b1] ∈ J1. One proves
similarly that π(2)[b2] ∈ J1. This shows that J2 = J1.

Hence the algorithm terminates with m = 1 and returns (V1, J1), or, concretely, (B1,G1). In
particular, x − y ∈ ZΦ, or equivalently x(t) = y(t). Similarly for z − w.

Remark 1 (notational convention) According to Theorem 3(a), given a template π and v ∈ Rn,
checking if π[v] ∈ π[Vm] is equivalent to checking if v ∈ Vm, which can be effectively done knowing
the basis Bm of Vm concretely returned by the algorithm (another, equivalent possibility, is checking if
v is orthogonal to the space V⊥m , which is built in the minimization phase, see next section).

It is sometimes useful to represent the whole set π[Vm] compactly in terms of a new template. For
example, considering the base B1 and the template π in the example above, we can use a new two
parameters template and with a slight abuse of notation write

π[V2] = a1x − a1y + a2z − a2w

as a shorthand of π[V2] = (a1x − a1y + a2z − a2w)[R2].

Remark 2 (linear systems) Consider the case of a linear system, that is, when the drifts fi in F are
linear functions of the xi’s. Consider the chain V0 ⊇ V1 ⊇ · · · in (14). It is easy to prove that as soon
as Vm+1 = Vm then the chain has stabilized, that is Vm+k = Vm for each k ≥ 0. Therefore, for linear
systems, stabilization can be detected without looking at the ideals chain (15), hence dispensing with
Gröbner bases. The resulting single chain algorithm boils down to the ‘refinement’ algorithm of [6,
Th.2].

12

6 Minimization

We present a method for reducing the size of the an initial value problem. The resulting reduced
problem, while equivalent in a precise sense to the original problem, is minimal in terms of number of
equations and variables, among all systems that can be obtained by linear aggregations of the original
equations.

The method takes as an input the space Vm returned by the double chain algorithm in the preceding
section when fed with a certain linear template. The method itself is quite simple and only relies on
simple linear algebraic operations that can be efficiently automated.

The basic idea is projecting the original system of equations onto a suitably chosen subspace of
RN . Consider the linear template

π = a1 · x1 + · · · + aN · xN (20)

where the ai’s are distinct parameters. By applying the algorithm of the preceding section to this
template, we obtain a subspace V 4

= Vm ⊆ R
N . Consider now the orthogonal complement of V in RN

(where 〈·, ·〉 is the usual scalar product between vectors in RN and v,w denote generic vectors in RN)

W 4
= V⊥ = {w ∈ RN : 〈w, v〉 = 0 for each v ∈ V} .

We show that the trajectory x(t) lies entirely in W, that is x(t) ∈ W for each t in the open interval of
definition, say D, of the trajectory. Indeed, by virtue of Theorem 3(a), we have that v ∈ V if and only
if (here v = (v1, ..., vN)T)

〈x, v〉 =
∑N

i=1 vixi = π[v] ∈ ZΦ .

By definition ofZΦ, this means that v ∈ V if and only if

〈x(t), v〉 =
∑N

i=1 vixi(t) = π[v](t) = 0 for each t

that is x(t) ∈ W for each t in the open interval D of definition of x(t). In other words, v ∈ V if and
only if v is orthogonal to each x(t), or V = {x(t) : t ∈ D}⊥. This is equivalent to the following crucial
lemma.

Lemma 5 W = V⊥ = span{ x(t) : t ∈ D }.

The fact that the trajectory x(t) entirely lies in, and in fact generates, the subspace W, suggests
that we can obtain a more economical representation of x(t) by adopting a system of coordinates in
this subspace. More formally, let B be any orthonormal basis of W. It is convenient to represent B as
a matrix of l independent column vectors, B = [b1| · · · |bl] ∈ RN×l, where l 4= dim(W) ≤ N (in fact,
l ≤ m + 1 as well; this is discussed in the Appendix, Subsection A.3, where an efficient method for
building B out of the successive Lie derivatives of π is explained). Recall that orthonormality means
BT B = Il, with Il the l × l identity matrix. The orthogonal projection of any v onto W has, w.r.t. B,
coordinates BT v, which is of course a vector in Rl. Define now

y(t) 4
= BT x(t) for each t ∈ D . (21)

Since each x(t) ∈ W, each x(t) is a fixpoint of the projection, so with the above definition we have

x(t) = BBT x(t)

= By(t) . (22)

13

From the last equation, it is easy to check that y(t) is a solution, hence the unique analytic solution in
a suitable interval, of the following reduced problem Ψ = (G, y(0)), where F denotes the vector field
of the original initial value problem:

Ψ :
{

ẏ(t) = BT F (By(t))
y(0) = BT x(0) .

(23)

In order to check that y(t) as defined in (21) satisfies the first equation of (23), observe that, by
definition we have:

ẏ(t) = BT ẋ(t)

= BT F (x(t))

= BT F (By(t))

where the last equality follows from (22). The second equality of (23) is trivially seen to be true. Note
that the reduced system (23) features l ≤ N differential equations. In particular, observe that the vector
field of the reduced system, say G, is obtained by replacing each variable xi in the original F with a
linear combination of the variables y j’ s, as dictated by B, and then linearly aggregating the resulting
N terms, as dictated by BT . As a consequence, the maximum degree in the reduced G does not exceed
the maximum degree in the original F.

Equation (22) naturally extends to any polynomial behaviour. That is, for any polynomial p ∈
R[x], we have p(t) = p (x(t)) = p (By(t)). In the end, we have proven the following result, which
shows that we can exactly recover any behaviour induced by the original system from the reduced
system.

Theorem 4 (exact reduction) Let y(t) be the unique analytic solution of the (reduced) problem (23).
Then, x(t) = By(t). Moreover, for any polynomial behaviour p(t) induced by the original problem (1),
we have p(t) = p (By(t)).

The reduced system is minimal among all systems obtained as linear aggregations of the original
system. In the next result, the interpretation of the k-dimensional vector function z(t) is that it may
(but need not) arise as the solution of any system with k equations.

Theorem 5 (minimality) Assume for some N × k matrix C and vector function z(t), we have x(t) =

Cz(t), for each t ∈ D. Then k ≥ l.

Proof Assume k ≤ N (otherwise there is nothing to prove). As the trajectory x(t) spans W (Lemma 5),
which has dimension l, we can form a rank l matrix E as E = [x(t1)| · · · |x(tl)] = [Cz(t1)| · · · |Cz(tl)] =

C[z(t1)| · · · |z(tl)], for suitable points t1, ..., tl. As in general rk(AB) ≤ min{rk(A), rk(B)}, we have
rk(C) ≥ l. But k ≥ rk(C), which implies the thesis. 2

As a corollary of Theorem 4, we obtain a further characterization of L-bisimilarity, which shows
that we can also reason syntactically on polynomial behaviours in terms of the reduced system. In
particular, L-bisimilarity between pairs of individual variables reduces to plain equality between the
corresponding rows of B, which allows one to easily form equivalence classes of variables if desired.
Let us denote by G = (g1, ..., gl)T the polynomial vector field of the reduced system. Note that G is
expressed in terms of the variables y = (y1, ..., yl)T , more precisely G = BT F(By).

14

Corollary 1 Let p, q ∈ R[x]. Then p ∼Φ q in CΦ if and only if p(By) ∼Ψ q(By) in CΨ. In particular,
xi ∼Φ x j in if and only if row i equals row j in B.

Example 7 Let us consider again the problem of Example 3. Recall from Example 6 that the al-
gorithm for computing invariants stops with m = 1 returning V1, J1. In particular, V 4

= V1 =

span{(1,−1, 0, 0)T , (0, 0, 1,−1)T }. It is easily checked that W = V⊥ = span{c1, c2}, where c1 =

(1/
√

2, 1/
√

2, 0, 0)T and c2 = (0, 0, 1/
√

2, 1/
√

2)T are orthonormal vectors.
ẏ1(t) = 1√

2
y1(t)y2(t) + y2(t)

ẏ2(t) = y2(t)
y(0) = (0,

√
2)T .

Hence we let the basis matrix be B = [c1|c2]. By applying
(23), we build the minimal system in the variables y = (y1, y2)T ,
shown on the right. Note that the first and second rows of B are
equal, as well as the third and the fourth, which proves (again)
that x(t) = y(t) and z(t) = w(t).

7 Examples

Although the focus of the present paper is mostly on theory, it is instructive to put a proof-of-concept
implementation8 of our algorithms at work on a few simple examples taken from the literature. We
illustrate below two cases, a linear and a nonlinear system.

7.1 Example 1: linearity and weighted automata

The purpose of this example is to argue that, when the transition structure induced by the Lie-
derivatives is considered, L-bisimilarity is fundamentally a linear-time semantics. We first introduce
weighted automata, a more compact9 way of representing the transition structure of the coalgebra CΦ.

x1

x2

x5

x6 x7

x8 x9

x10

x3 x4

1

2/3

1/3

1/2

1/2

1 1

1
3/2

3/4

1

1

1

A (finite or infinite) weighted automaton is like an ordinary au-
tomaton, save that both states and transitions are equipped with
weights from R. Given F and x0, we can build a weighted automa-
ton with monomials as states, weighted transitions given by the rule

α
λ
−−→ β iffLF(α) = λβ+q for some polynomial q and real λ , 0, and

where each state α is assigned weight α(x0). As an example, con-
sider the weighted automaton on the right, where the state weights
(not displayed) are 1 for x10, and 0 for any other state. This au-
tomaton is generated (and in fact codes up) a system of odes with ten variables, where ẋ1 = x2,
ẋ2 = (2/3)x3 + (1/3)x4 etc., with the initial condition as specified by the state weights (x1(0) = 0 etc.).

A run in a weighted automaton is a path in the graph from a state to a state. The run’s weight is
the product of all involved transition weights and the last state’s weight. In the standard linear-time
semantics of weighted automata, each state s is assigned a function σs : N → R (a stream, in the
terminology of Rutten [26]) such that σs(i) is obtained by summing up all the weights of the runs
involving i transitions starting from s; e.g. σx1(3) = 1/2 + 1/2 = 1. Standard results in coalgebra (or
a simple direct proof) ensure that this semantics is in agreement with bisimulation, in the sense that
s ∼Φ s′ if and only σs = σs′ ; we refer the interested reader to [26, 5] for details on this construction
and result.

8Python code available at http://local.disia.unifi.it/boreale/papers/DoubleChain.py. Reported execu-
tion times relative to the pypy interpreter under Windows 8 on a core i5 machine.

9At least for linear vector fields, the resulting weighted automaton is finite.

15

When applied to our example, these results imply for instancethat x1(t) = x5(t). In fact, when
invoked with this system and π =

∑10
i=1 aixi as inputs, the double chain algorithm terminates at m = 2

(in about 0.3 s; being this a linear system, Gröbner bases are never actually needed), returning π[V2] =

a1(x6−x7)+a2(x8−x9)+a3(x6−x2)+a4(x5−x1)+a5(3
2 x8−x4)+a6(3

4 x8−x3). This implies the expected
x1 = x5 (let a4 = 1 and ai = 0 for i , 4 in the returned template), as well as other equivalences, like
x2 = x6. All in all, being V2 a 6-dimensional space, we will have a 4-dimensional W = V⊥2 , that is a
minimal system with 4 equations, a 60% reduction.

7.2 Example 2: nonlinear conservation laws

θ

The law of the simple pendulum is d2

dt2 θ =
g
` cos θ, where θ is the angle from

the roof to the rod measured clockwise, ` is the length of the rod and g is
gravity acceleration (see picture on the right). If we assume the initial condition
θ(0) = 0, this can be translated into the polynomial initial value problem below,
where x = (θ, ω, x, y)T . The meaning of the variables is ω = θ̇, x = cos θ and
y = sin θ. We assume for simplicity ` = 1 and g = 9. 

θ̇ = ω
ω̇ =

g
`
x

ẋ = −yω
ẏ = xω

x(0) = (0, 0, `, 0)T .

For this system, the double chain algorithm reports that there is no non-
trivial linear conservation law (after m = 6 iterations and about 0.3 s). We
then ask the algorithm to find all the conservation laws of order two, that
is we use the template (α ranges over monomials) π =

∑
αi : deg(αi)≤2 aiαi

as input. The algorithm terminates after m = 16 iterations (in about 7
s). The invariant J16 contains all the wanted conservation laws. The returned Gröbner basis for
it is G = {x2 + y2 − 1, ω2 − 18y}. The first term here just expresses the trigonometric identity
(cos θ)2 + (sin θ)2 = 1. Recalling that the (tangential) speed of the bob is v = `θ̇ = `ω, and that
its vertical distance from the roof is h = ` sin θ = `y, we see that the second term, considering our
numerical values for `, g, is equivalent to the equation 1

2 v2 = gh, which, when multiplied by the mass
m of the bob, yields the law of conservation of energy 1

2 mv2 = mgh (acquired kinetic energy = lost
potential energy).

8 Conclusion, future and related work

We have presented a framework for automatic reasoning and reduction in systems of polynomial odes.
In particular, we offer algorithms to: (1) compute the most general set of identities valid in the system
that fit a user-specified template; and, (2) build a minimal system equivalent to the original one. These
algorithms are based on a mix of simple algebraic and coalgebraic techniques.

Directions for future work Scalability is an issue, as already for simple systems the Gröbner basis
construction involved in the main algorithm can be computationally quite demanding. Further ex-
perimentation, relying on a well-engineered implementation of the method, and considering sizeable
case studies, is called for in order to assess this aspect. One would also like to extend the presented
approach so as to deal with regions of possible initial values, rather than fixing one such value. This
is important, e.g., in the treatment of hybrid systems (see below). Concerning minimization, we note
that the reduced system may not preserve the structure of the original one (e.g. meaning of variables):
this may be problematic in certain application domains, such as system biology. In the future, we
intend to investigate this issue. Approximate reductions in the sense of System Theory [1] are also
worth investigating.

16

Related work Bisimulations for weighted automata are related to our approach, because, as argued
in subsection 7.1, Lie-derivation can be naturally represented by such an automaton. Algorithms for
computing largest bisimulations on finite weighted automata have been studied by Boreale et al. [6, 5].
A crucial ingredient in these algorithms is the representation of bisimulations as finite-dimensional
vector spaces. Approximate version of this technique have also been recently considered in relation
to Markov chains [7]. As discussed in Remark 2, in the case of linear systems, the algorithm in
the present paper reduces to that of [6, 5]. Algebraically, moving from linear to polynomial systems
corresponds to moving from vector spaces to ideals, hence from linear bases to Gröbner bases. From
the point of view automata, this step leads to considering infinite weighted automata. In this respect,
the present work may be also be related to the automata-theoretic treatment of linear odes in by Fliess
and Reutenauer [18].

Although there exists a rich literature dealing with linear aggregation of systems of odes (e.g.
[1, 20, 31, 22]), we are not aware of fully automated approaches to minimization (Theorem 5), with
the notable exception of a series of recent works by Cardelli and collaborators [11, 12, 13]. Mostly
related to ours is [11]. There, for an extension of the polynomial ode format called IDOL, the authors
introduce two flavours of differential equivalence, called Forward (fde) and Backward (bde). They
provide a symbolic, SMT-based partition refining algorithms to compute the largest equivalence of
each type. fde groups variables in such a way that the corresponding quotient system recovers the sum
of the original solutions in each class, whatever the initial condition. However, precise information
on the individual original solutions cannot in general be recovered from the reduced system. In bde,
variables grouped together are guaranteed to have the same solution. Therefore the quotient system
permits in this case to fully recover the original solutions. As such, bde can be compared directly to
our L-bisimulation.

An important difference is that bde is stricter than necessary, as it may tell apart variables that
have the same solution. This is not the case with L-bisimilarity, which is, in this respect, correct
and complete. An important consequence of this difference is that the quotient system produced
by bde is not minimal, whereas that produced by L-bisimulation is in a precise sense. This may
imply a significant difference in size in concrete cases. For example, bde finds no reductions at all
in the linear system10 of subsection 7.1, whereas L-bisimulation, as seen, leads to a 60% reduction.
Generally speaking, L-bisimulation is more generous because, due to its linear nature, it can equate
linear combinations of monomials with each other (such as (2/3)x3 + x4/3 = (1/2)x8 + (1/2)x9 in the
mentioned system), whereas bde can only equate individual variables (this difference is not, of course,
specific to linear systems). For what concerns reasoning, we note that, being based on partitions of
variables, bde cannot say anything about identities involving polynomial, or even linear, combinations
of variables. Finally, the approach of [11] and ours rely on two quite different algorithmic decision
techniques, SMT and Gröbner bases, both of which have exponential worst-case complexity. As
shown by the experiments reported in [11], in practice bde and fde have proven quite effective at
system reduction. At the moment, we lack similar experimental evidence for L-bisimilarity. We also
note that, limited to the case of polynomials of degree two, a polynomial algorithm for bde exists [12].

Linear aggregation and lumping of (polynomial) systems of odes are well known in the literature,
se e.g. [1, 22, 20, 31] and references therein. However, as pointed out by Cardelli et al. [11], no
general algorithms for computing the largest equivalence, hence the minimal exact reduction (in the
sense of our Theorem 5) was known.

The seminal paper of Sankaranarayanan, Sipma and Manna [28] introduced polynomial ideals to
find invariants of hybrid systems. Indeed, the study of the safety of hybrid systems can be shown to

10Checked with the Erode tool by the same authors [14].

17

reduce constructively to the problem of generating invariants for their differential equations [24]. The
results in [28] have been subsequently refined and simplified by Sankaranarayanan using pseudoideals
[29], which enable the discovery of polynomial invariants of a special form. Other authors have
adapted this approach to the case of imperative programs, see e.g. [9, 21, 25] and references therein.
Reduction and minimization seem to be not a concern in this field.

Platzer has introduced differential dynamic logic to reason on hybrid systems [23]. The rules
of this logic implement a fundamentally inductive, rather than coinductive, proof method. Mostly
related to ours is Ghorbal and Platzer’s recent work on polynomial invariants [19]. One one hand, they
characterize algebraically invariant regions of vector fields – as opposed to initial value problems, as
we do. On the other hand, they offer sufficient conditions under which the trajectory induced by a
specific initial value satisfies all instances of a polynomial template (cf. [19, Prop.3]). The latter result
compares with ours, but the resulting method appears to be not (relatively) complete in the sense
of our double chain algorithm. Moreover, the computational prerequisites of [19] (symbolic linear
programming, exponential size matrices, symbolic root extraction) are very different from ours, and
much more demanding. Again, minimization is not addressed.

Acknowledgments The author has benefited from stimulating discussions with Mirco Tribastone.

References

[1] A.C. Antoulas. Approximation of Large-scale Dynamical Systems. SIAM, 2005.

[2] V.I. Arnold. Ordinary Differential Equations. The MIT Press, ISBN 0-262-51018-9, 1978.

[3] M. Bernardo. A survey of Markovian behavioral equivalences. In Formal Methods for Perfor-
mance Evaluation, vol. 4486 of LNCS, pages 180-219. Springer, 2007.

[4] M. L. Blinov, J. R. Faeder, B. Goldstein, and W. S. Hlavacek. BioNet-Gen: software for rule-
based modeling of signal transduction based on the interactions of molecular domains. Bioinfor-
matics, 20(17): 3289-3291, 2004.

[5] F. Bonchi, M.M. Bonsangue, M. Boreale, J.J.M.M. Rutten, and A. Silva. A coalgebraic perspec-
tive on linear weighted automata. Inf. Comput. 211: 77-105, 2012.

[6] M. Boreale. Weighted Bisimulation in Linear Algebraic Form. Proc. of CONCUR 2009, LNCS
5710, pp. 163-177, Springer, 2009.

[7] M. Boreale. Analysis of Probabilistic Systems via Generating Functions and Padé Approxi-
mation. ICALP 2015 (2) 2015: 82-94, LNCS 9135, Springer, 2015. Extended version avail-
able as DiSIA working paper 2016/10, http://local.disia.unifi.it/wp_disia/2016/
wp_disia_2016_10.pdf.

[8] M. Boreale. Algebra, coalgebra, and minimization in polynomial differential equations. In Proc.
of FoSSACS 2017, LNCS, Springer, 2017.

[9] D. Cachera, Th. Jensen, A. Jobi, and F. Kirchner. Inference of Polynomial Invariants for Imper-
ative Programs: A Farewell to Gröbner Bases. SAS 2012, LNCS 7460: 58-74, Springer, 2012.

[10] L. Cardelli. On process rate semantics. Theoretical Computer Science, 391(3):190-215, 2008.

18

[11] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin. Symbolic Computation of Differ-
ential Equivalences, POPL 2016.

[12] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin. Efficient Syntax-driven Lumping
of Differential Equations, TACAS 2016.

[13] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin. Comparing Chemical Reaction
Networks: A Categorical and Algorithmic Perspective, LICS 2016.

[14] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin. ERODE: Evaluation and Reduc-
tion of Ordinary Differential Equations. Available from http://sysma.imtlucca.it/tools/
erode/.

[15] F. Ciocchetta and J. Hillston. Bio-PEPA:A framework for the modelling and analysis of biologi-
cal systems. Theoretical Computer Science, 410 (33-34):3065-3084, 2009

[16] M. Colón. Polynomial approximations of the relational semantics of imperative programs. Sci-
ence of Computer Programming 64: 76-9, 2007.

[17] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms An Introduction to Compu-
tational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics,
Springer, 2007.

[18] M. Fliess, and C. Reutenauer. Theorie de Picard-Vessiot des Systèmes Reguliers. Colloque Nat.
CNRS-RCP567, Belle-ile sept. 1982, in Outils et Modèles Mathématiques pour l’Automatique
l’Analyse des systèmes et le tratement du signal. CNRS, 1983.

[19] K. Ghorbal, A. Platzer. Characterizing Algebraic Invariants by Differential Radical Invariants.
TACAS 2014: 279-294, 2014. Extended version available from http://reports-archive.
adm.cs.cmu.edu/anon/2013/CMU-CS-13-129.pdf.

[20] G. Li, H. Rabitz, and J. Tóth. A general analysis of exact nonlinear lumping in chemical kinetics.
Chemical Engineering Science 49 (3), 343-361, 1994.

[21] M. Müller-Olm and H. Seidl. Computing polynomial program invariants. Information Processing
Letters 91(5), 233-244, 2004.

[22] M.S. Okino and M.L. Mavrovouniotis. Simplification of mathematical models of chemical reac-
tion systems. Chemical Reviews, 2(98):391-408, 1998.

[23] A. Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reasoning 41(2), 143-189,
2008.

[24] A. Platzer. Logics of dynamical systems. In LICS 2012: 13-24, IEEE, 2012.

[25] E. Rodríguez-Carbonell and D. Kapur. Generating all polynomial invariants in simple loops.
Journal of Symbolic Computation 42(4), 443-476, 2007.

[26] J.J.M.M. Rutten. Behavioural differential equations: a coinductive calculus of streams, automata,
and power series. Theoretical Computer Science, 308(1–3): 1–53, 2003.

[27] D. Sangiorgi. Beyond Bisimulation: The “up-to" Techniques. FMCO 2005: 161-171, 2005.

[28] S. Sankaranarayanan, H. Sipma, and Z. Manna. Non-linear loop invariant generation using Gröb-
ner bases. POPL 2004.

19

[29] S. Sankaranarayanan. Automatic invariant generation for hybrid systems using ideal fixed points.
HSCC 2010: 221-230, 2010.

[30] A. Tiwari. Approximate reachability for linear systems. HSCC 2003: 514-525, 2003.

[31] J. Tóth, G. Li, H. Rabitz, and A. S. Tomlin. The effect of lumping and expanding on kinetic
differential equations. SIAM Journal on Applied Mathematics, 57(6):1531-1556, 1997.

[32] M. Tribastone, S. Gilmore, and J. Hillston. Scalable differential analysis of process algebra mod-
els. IEEE Trans. Software Eng., 38(1):205-219, 2012.

[33] E. O. Voit. Biochemical systems theory: A review. ISRN Biomathematics, 2013:53, 2013.

20

A Proofs and additional technical material

A.1 Proofs

Proof of Theorem 2: We check each of the equivalences (9–12) in turn.

• If p ∼Φ q then p − q ∈ ker(∼Φ) by definition of ker. Conversely, assume p − q ∈ ker(∼Φ) ⊆〈
ker(∼Φ)

〉
. Since, by first part of Lemma 2 with R =∼Φ, the last set is an invariant, by the

second part of the same lemma we obtain the wanted p ∼Φ q, hence (9).

• Since p ∼Φ q implies (p − q)(t) = 0, and r(t) = 0 implies r ∼Φ 0 (in both cases by Theorem 1),
from the definition of ker(∼Φ) the second equality (10) immediately follows.

• A polynomial behaviour p(t) is identically 0 inA if and only if all its derivatives d
dt j p(t), j ≥ 0,

vanish at 0, and this, via (7) and (5), yields (11).

• Note that if p ∈ I, with I an invariant, then p(j)(x0) = 0 for each j ≥ 0 (easily shown by induction
on j). Conversely, if p(j)(x0) = 0 for each j, then J =

〈
{p, p(1), p(2), ...}

〉
is an invariant and

contains p. To check invariance of J, consider a generic q ∈ J, q =
∑

i hi p(ji): it is immediate
that q(x0) = 0 and that L(q) =

∑
iL(hi)p(ji) +

∑
i hi p(ji+1) ∈ J. This way we have also proven

the last equation (12).

2

Proof of Lemma 3: We proceed by induction on j. The base case j = 1 follows from the definition of
m. Assuming by induction hypothesis that Vm = · · · = Vm+ j and that Jm = · · · = Jm+ j, we prove now
that Vm = Vm+ j+1 and that Jm = Jm+1+1. The key to the proof is the following fact

π(m+ j+1)[v] ∈ Jm for each v ∈ Vm . (24)

From this fact the thesis will follow, indeed:

1. Vm = Vm+ j+1. To see this, observe that for each v ∈ Vm+ j = Vm (the equality here follows from
the induction hypothesis), it follows from (24) that π(m+ j+1)[v] can be written as a finite sum of
the form

∑
l hl · π

(jl)[ul], with 0 ≤ jl ≤ m and ul ∈ Vm. As a consequence, π(m+ j+1)[v](x0) = 0,
which shows that v ∈ Vm+ j+1. This proves that Vm+ j+1 ⊇ Vm+ j = Vm; the reverse inclusion is
obvious;

2. Jm = Jm+ j+1. As a consequence of Vm+ j+1 = Vm+ j(= Vm) (the previous point), we can write

Jm+ j+1 =
〈
∪

m+ j
i=1 π(i)[Vm+ j] ∪ π(m+ j+1)[Vm+ j]

〉
=

〈
Jm+ j ∪ π

(m+ j+1)[Vm+ j]
〉

=
〈

Jm ∪ π
(m+ j+1)[Vm]

〉
where the last step follows by induction hypothesis. From (24), we have that π(m+ j+1)[Vm] ⊆ Jm,
which implies the thesis for this case, as

〈
Jm

〉
= Jm.

We prove now (24). Fix any v ∈ Vm. First, note that π(m+ j+1)[v] = L(π(m+ j)[v]) (here we are using
(13)). As by induction hypothesis π(m+ j)[Vm] = π(m+ j)[Vm+ j] ⊆ Jm+ j = Jm, we have that π(m+ j)[v] can

21

be written as a finite sum
∑

l hl · π
(jl)[ul], with 0 ≤ jl ≤ m and ul ∈ Vm. Applying the rules of Lie

derivatives (2), (3), we find that π(m+ j+1)[v] = L(π(m+ j)[v]) equals∑
l

(
hl · π

(jl+1)[ul] +L(hl) · π(jl)[ul]
)
.

Now, for each ul, ul ∈ Vm = Vm+1, each term π(jl+1)[ul], with 0 ≤ jl + 1 ≤ m + 1, is by definition in
Jm+1 = Jm. This shows that π(m+ j+1)[v] ∈ Jm, as required. 2

Proof of Corollary 1: Concerning the first part, let us denote by ZΨ the largest invariant induced
by Ψ in the polynomial ring R[y], according to Theorem 2. We have: p ∼Φ q in R[x] if and only
if (p − q) ∈ ZΦ (Theorem 2(10)) if and only if (p − q) ◦ x(t) = 0 (Theorem 2(9)) if and only if
(p−q)◦By(t) = 0 (Theorem 4) if and only if (p(By)−q(By)) (t) = 0 if and only if (p(By)−q(By)) ∈ ZΨ
(Theorem 2(9)) if and only if p(By) ∼Ψ q(By) in R[y] (Theorem 2(10)).

Concerning the second part, denoting by ei the i-th canonical vector in RN , note that: xi ∼Φ x j if
and only if xi−x j ∈ ZΦ if and only if ei−e j ∈ Vm if and only if ei−e j⊥W if and only if BT (ei−e j) = 0,
from which the thesis follows for this case. 2

A.2 Pseudoideals

We briefly discuss a sufficient condition for establishing the condition (19), that is Ji+1 = Ji, which
does not involve Gröbner bases, but only linear algebraic computations, and can therefore lead to a
gain in efficiency. We ill make use of a bit of new notation. For a set of polynomials S and an integer
k ≥ 0, denote by

〈
S

〉
k the subset of

〈
S

〉
generated from S by only using multiplier polynomials h j

of degree ≤ k (cf. equation (8)); this is a pseudo ideal of degree k, in the terminology of Colón [16].
We can choose k ≥ 0 and replace (19) by the following stronger condition

π(i+1)[Bi] ⊆
〈
∪i

j=1 π
(j)[Bi]

〉
k . (25)

If (25) is true then of course also (19) is true, while the converse is not valid in general. Condition
(25) can be checked by linear algebraic techniques, which do not involve Gröbner bases computations.
Indeed, a pseudo ideal

〈
S

〉
k has the structure of a vector space over R of dimension |S | ·M, where M

is the number of distinct monomials of degree ≤ k. However, the resulting algorithm is not guaranteed
to terminate.

A.3 Building an orthonormal basis of V⊥

Let us first work out a convenient characterization of the space W = V⊥. We refer here to the ter-
minology of Section 6. Consider the successive Lie derivatives of the vector x = (x1, ..., xN)T , taken
componentwise, that is the vectors of polynomials x(j) = (x(j)

1 , ..., x(j)
N)T , for j = 0, 1, ... Once evaluated

at x0, these become vectors in RN . We claim that

W = span
{
x(x0), x(1)(x0), ..., x(m)(x0)

}
. (26)

Indeed, we have, by definition of V (here v = (v1, ..., vN)T denotes a generic vector in RN)

V = Vm

=

v :
N∑

i=1

vix
(j)
i (x0) = 0 for j = 0, ...,m


=

{
v : 〈v, x(j)(x0)〉 = 0 for j = 0, ...,m

}
=

{
x(x0), x(1)(x0), ..., x(m)(x0)

}⊥
22

which is equivalent to (26). Note that l = dim(W) ≤ m + 1,N (and typically one will have l �
N). Therefore, a way to build an orthonormal basis B for W is just to apply the Gram-Schmidt
orthonormalization process to the set of vectors on the right-hand side of (26). This process can in
fact carried out incrementally, as soon as the Lie derivatives x(j) are computed.

23

